Displaying all 7 publications

Abstract:
Sort:
  1. Balouch A, Ali Umar A, Shah AA, Mat Salleh M, Oyama M
    ACS Appl Mater Interfaces, 2013 Oct 9;5(19):9843-9.
    PMID: 24025235 DOI: 10.1021/am403087m
    Highly efficient and remarkable selective acetone conversion to isopropanol has been achieved via a heterogeneous catalytic hydrogenation of acetone by NaBH4 in the presence of semihollow palladium nanoparticles (PdNPs) grown on ITO substrate. PdNPs with high surface defect grown on an indium tin oxide (ITO) surface were prepared via a simple immersion of the substrate into a solution containing K2PdCl6, sodium dodecyl sulphate (SDS), and formic acid for 2 h at room temperature. The sample showed remarkably high heterogeneous catalytic efficiency by producing 99.8% of isopropanol within 6 min using only 0.28 μg of PdNPs on the ITO surface. The present system exhibits heterogenenous catalytic hydrogenation efficiency 1 × 10(6) time higher than using the conventional Raney Ni system.
  2. Tan ST, Umar AA, Balouch A, Yahaya M, Yap CC, Salleh MM, et al.
    Ultrason Sonochem, 2014 Mar;21(2):754-60.
    PMID: 24184009 DOI: 10.1016/j.ultsonch.2013.10.009
    The crystallographic plane of the ZnO nanocrystals photocatalyst is considered as a key parameter for an effective photocatalysis, photoelectrochemical reaction and photosensitivity. In this paper, we report a simple method for the synthesis of a new (101) high-energy plane bounded ZnO nanocubes photocatalyst directly on the FTO surface, using a seed-mediated ultrasonic assisted hydrolysis process. In the typical procedure, high-density nanocubes and quasi-nanocubes can be grown on the substrate surface from a solution containing equimolar (0.04 M) zinc nitrate hydrate and hexamine. ZnO nanocubes, with average edge-length of ca. 50 nm, can be obtained on the surface in as quickly as 10 min. The heterogeneous photocatalytic property of the sample has been examined in the photodegradation of methyl orange (MO) by UV light irradiation. It was found that the ZnO nanocubes exhibit excellent catalytic and photocatalytic properties and demonstrate the photodegradation efficiency as high as 5.7 percent/μg mW. This is 200 times higher than those reported results using a relatively low-powered polychromatic UV light source (4 mW). The mechanism of ZnO nanocube formation using the present approach is discussed. The new-synthesized ZnO nanocubes with a unique (101) basal plane also find potential application in photoelectrochemical devices and sensing.
  3. Shah MT, Balouch A, Rajar K, Sirajuddin, Brohi IA, Umar AA
    ACS Appl Mater Interfaces, 2015 Apr 1;7(12):6480-9.
    PMID: 25785883 DOI: 10.1021/am507778a
    Magnetite nanoparticles were successfully synthesized and effectively employed as heterogeneous catalyst for hydrogenation of ketone moiety to alcohol moiety by NaBH4 under the microwave radiation process. The improvement was achieved in percent recovery of isopropyl alcohol by varying and optimizing reaction time, power of microwave radiations and amount of catalyst. The catalytic study revealed that acetone would be converted into isopropyl alcohol (IPA) with 99.5% yield in short period of reaction time, using 10 μg of magnetite NPs (Fe3O4). It was observed that the catalytic hydrogenation reaction, followed second-order of reaction and the Langmuir-Hinshelwood kinetic mechanism, which elucidated that both reactants get adsorb onto the surface of silica coated magnetite nanocatalyst to react. Consequently, the rate-determining step was the surface reaction of acetone and sodium borohydride. The current study revealed an environment friendly conversion of acetone to IPA on the basis of its fast, efficient, and highly economical method of utilization of microwave irradiation process and easy catalyst recovery.
  4. Mawarnis ER, Ali Umar A, Tomitori M, Balouch A, Nurdin M, Muzakkar MZ, et al.
    ACS Omega, 2018 Sep 30;3(9):11526-11536.
    PMID: 31459253 DOI: 10.1021/acsomega.8b01268
    A combinative effect of two or more individual material properties, such as lattice parameters and chemical properties, has been well-known to generate novel nanomaterials with special crystal growth behavior and physico-chemical performance. This paper reports unusually high catalytic performance of AgPt nanoferns in the hydrogenation reaction of acetone conversion to isopropanol, which is several orders higher compared to the performance shown by pristine Pt nanocatalysts or other metals and metal-metal oxide hybrid catalyst systems. It has been demonstrated that the combinative effect during the bimetallisation of Ag and Pt produced nanostructures with a highly anisotropic morphology, i.e., hierarchical nanofern structures, which provide high-density active sites on the catalyst surface for an efficient catalytic reaction. The extent of the effect of structural growth on the catalytic performance of hierarchical AgPt nanoferns is discussed.
  5. Tan ST, Ali Umar A, Balouch A, Nafisah S, Yahaya M, Yap CC, et al.
    ACS Comb Sci, 2014 Jul 14;16(7):314-20.
    PMID: 24919039 DOI: 10.1021/co400157m
    This Research Article reports an unusually high efficiency heterogeneous photodegradation of methyl orange (MO) in the presence of Ag nanoparticle-loaded ZnO quasi-nanotube or nanoreactor (A-ZNRs) nanocatalyst grown on FTO substrate. In typical process, photodegradation efficiency of as high as 21.6% per μg per Watts of used catalyst and UV power can be normally obtained within only a 60-min reaction time from this system, which is 10(3) order higher than the reported results. This is equivalent to the turnover frequency of 360 mol mol(-1) h(-1). High-density hexagonal A-ZNRs catalysts were grown directly on FTO substrate via a seed-mediated microwave-assisted hydrolysis growth process utilizing Ag nanoparticle of approximately 3 nm in size as nanoseed and mixture aqueous solution of Zn(NO3)·6H2O, hexamethylenetetramine (HMT), and AgNO3 as the growth solution. A-ZNRs adopts hexagonal cross-section morphology with the inner surface of the reactor characterized by a rough and rugged structure. Transmission electron microscopy imaging shows the Ag nanoparticle grows interstitially in the ZnO nanoreactor structure. The high photocatalytic property of the A-ZNRs is associated with the highly active of inner side's surface of A-ZNRs and the oxidizing effect of Ag nanoparticle. The growth mechanism as well as the mechanism of the enhanced-photocatalytic performance of the A-ZNRs will be discussed.
  6. Balouch A, Ali Umar A, Mawarnis ER, Md Saad SK, Mat Salleh M, Abd Rahman MY, et al.
    ACS Appl Mater Interfaces, 2015 Apr 15;7(14):7776-85.
    PMID: 25807116 DOI: 10.1021/acsami.5b01012
    This paper reports a facile, solution-phase approach to synthesizing a one-dimensional amorphous face-centered-cubic (fcc) platinum (a-Pt) nanostructure (nanofibers) directly on an indium-tin oxide (ITO) substrate. The electron microscopy analysis result shows that the a-Pt nanofiber has a diameter and length of approximately 50 nm and 1 μm, respectively, and is grown in high density on the entire surface of the ITO substrate. The X-ray photoelectron spectroscopy analysis result further reveals that the a-Pt nanofibers feature metallic properties with highly reactive surface chemistry, promising novel performance in electrochemistry, catalysis, and sensors. A synergetic interplay between the formic acid reducing agent and the hexamethylenetetramine surfactant in the reduction of Pt ions is assumed as the driving force for the formation of the amorphous phase in the Pt nanostructure. The catalytic properties of a-Pt were examined in the acetone hydrogenation reaction under microwave irradiation. a-Pt shows excellent heterogeneous catalytic properties for converting acetone to isopropyl alcohol with turnover number and frequency as high as 400 and 140 min(-1), respectively. The preparation and formation mechanism of the a-Pt nanofibers will be discussed in detail in this paper.
  7. Mahar AM, Balouch A, Talpur FN, Abdullah, Panah P, Kumar R, et al.
    Environ Sci Pollut Res Int, 2020 Mar;27(9):9970-9978.
    PMID: 31933082 DOI: 10.1007/s11356-019-07548-y
    In this study, nano-sized ITO supported Pt-Pd bimetallic catalyst was synthesized for the degradation of methyl parathion pesticide, a common extremely toxic contaminant in aqueous solution. On the characterization with different techniques, a beautiful scenario of honeycomb architecture composed of ultra-small nanoneedles or fine hairs was found. Average size of nanocatalyst also confirmed which was in the range of 3-5 nm. High percent degradation (94%) was obtained in 30 s using 1.5 × 10- 1 mg of synthesized nanocatalyst, 0.5 mM NaBH4, and 110 W microwave radiations power. Recyclability of nanocatalyst was efficient till 4th cycle observed during study of reusability. The supported Pt-Pd bimetallic nanocatalyst on ITO displayed many advantages over conventional methods for degradation of methyl parathion pesticide, such as high percent degradation, short reaction time, small amount of nanocatalyst, and multitime reusability. Graphical abstract Schematic illustration of reaction for degradation of methyl parathion.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links