Displaying all 3 publications

Abstract:
Sort:
  1. Yusop AH, Bakir AA, Shaharom NA, Abdul Kadir MR, Hermawan H
    Int J Biomater, 2012;2012:641430.
    PMID: 22919393 DOI: 10.1155/2012/641430
    Scaffolds have been utilized in tissue regeneration to facilitate the formation and maturation of new tissues or organs where a balance between temporary mechanical support and mass transport (degradation and cell growth) is ideally achieved. Polymers have been widely chosen as tissue scaffolding material having a good combination of biodegradability, biocompatibility, and porous structure. Metals that can degrade in physiological environment, namely, biodegradable metals, are proposed as potential materials for hard tissue scaffolding where biodegradable polymers are often considered as having poor mechanical properties. Biodegradable metal scaffolds have showed interesting mechanical property that was close to that of human bone with tailored degradation behaviour. The current promising fabrication technique for making scaffolds, such as computation-aided solid free-form method, can be easily applied to metals. With further optimization in topologically ordered porosity design exploiting material property and fabrication technique, porous biodegradable metals could be the potential materials for making hard tissue scaffolds.
  2. Martin DM, Bakir AA, Lin F, Francis-Taylor R, Alduraywish A, Bai S, et al.
    Brain Stimul, 2021 10 06;14(6):1489-1497.
    PMID: 34626843 DOI: 10.1016/j.brs.2021.09.014
    BACKGROUND: The electrode placement and pulse width for electroconvulsive therapy (ECT) are important treatment parameters associated with ECT related retrograde memory side-effects. Modification of these parameters with right unilateral (RUL) ECT may have utility for further reducing these side-effects.

    OBJECTIVE: This study explored use of the frontoparietal (FP) placement for reducing retrograde memory side effects with ECT. We hypothesised that superior retrograde memory outcomes would occur with FP compared to temporoparietal (TP) placement and with ultrabrief (UB: 0.3 ms) compared to brief pulse (BP: 1.0 ms) width ECT.

    METHODS: In this randomised cross-over, double-blinded study, participants received a single treatment of BP TP, BP FP, UB TP and UB FP ECT. Neuropsychological testing was conducted prior to and immediately following each treatment. Computational modelling was conducted to explore associations between E-fields in regions-of-interest associated with memory.

    RESULTS: Nine participants completed the study. The FP placement was not superior to TP for retrograde memory outcomes. For both electrode placements UB pulse width was associated with significantly better visual retrograde memory compared to BP (p 

  3. Ding CCA, Dokos S, Bakir AA, Zamberi NJ, Liew YM, Chan BT, et al.
    Biomed Eng Online, 2024 Feb 22;23(1):24.
    PMID: 38388416 DOI: 10.1186/s12938-024-01206-2
    Aortic stenosis, hypertension, and left ventricular hypertrophy often coexist in the elderly, causing a detrimental mismatch in coupling between the heart and vasculature known as ventricular-vascular (VA) coupling. Impaired left VA coupling, a critical aspect of cardiovascular dysfunction in aging and disease, poses significant challenges for optimal cardiovascular performance. This systematic review aims to assess the impact of simulating and studying this coupling through computational models. By conducting a comprehensive analysis of 34 relevant articles obtained from esteemed databases such as Web of Science, Scopus, and PubMed until July 14, 2022, we explore various modeling techniques and simulation approaches employed to unravel the complex mechanisms underlying this impairment. Our review highlights the essential role of computational models in providing detailed insights beyond clinical observations, enabling a deeper understanding of the cardiovascular system. By elucidating the existing models of the heart (3D, 2D, and 0D), cardiac valves, and blood vessels (3D, 1D, and 0D), as well as discussing mechanical boundary conditions, model parameterization and validation, coupling approaches, computer resources and diverse applications, we establish a comprehensive overview of the field. The descriptions as well as the pros and cons on the choices of different dimensionality in heart, valve, and circulation are provided. Crucially, we emphasize the significance of evaluating heart-vessel interaction in pathological conditions and propose future research directions, such as the development of fully coupled personalized multidimensional models, integration of deep learning techniques, and comprehensive assessment of confounding effects on biomarkers.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links