Methods: We conducted a cross-sectional study over one year from January to December 2018 in the Transfusion Medicine Unit, Hospital Universiti Sains Malaysia. A total of 249 samples were recruited from CKD patients who received a blood transfusion (at least one-pint), which only match for ABO and Rh(D) antigen. The serum was screened for the presence of the RBC antibody using the gel agglutination technique (Diamed gel cards). Samples with positive antibody screening were subjected to antibody identification.
Results: Of the 249 transfused CKD patients, 31 (12.4%) developed RBC immunization. Thirty (12%) were alloimmunized, and one (0.4%) was autoimmunized. Anti-Mia was the most common antibody (n = 14, 46.7%) among alloantibodies, followed by anti-E (n = 7, 23.3%). There was a significant association between pregnancy history with the development of antibodies whereas, no significant association was found between sociodemographic background, stage of CKD, hemodialysis status, underlying medical illness, and number of packed cell transfusions with the development of RBC antibodies.
Conclusions: One-eighth of our patient cohort had RBC alloimmunization, and the risk was increased in patients with a history of pregnancy. We propose Rhesus RBC phenotyping and to supply blood match Rhesus antigen in CKD patients, especially patients of reproductive age.
CASE REPORT: A case of unusual severe HDFN due to anti-D alloimmunisation in undiagnosed RhD negative primigravida Malay woman is reported here. This case illustrates the possibility of an anamnestic response from previous unknown sensitisation event or the development of anti-D in mid trimester. The newborn expired due to hydrops fetalis and severe anaemia. Antenatally, the mother was identified as RhD positive and thus there was no antenatal antibody screening, antepartum anti-D prophylaxis or close fetal monitoring for HDFN.
DISCUSSION: The thorough antenatal ABO and RhD blood grouping with antibody screening is mandatory as part of prevention and early detection of HDFN especially due to anti-D alloimmunisation. Improper management of RhD negative women might lead to severe HDFN including in primigravida.
METHODS: This cross-sectional study involved 455 neonates between June and December 2020. Two milliliters of cord blood were analyzed with CareStart Biosensor 1 and dried cord blood spots with FST. Data was recorded and statistically analyzed. Sensitivity, specificity, positive predictive value, and negative predictive value were calculated to determine the performance of FST at specific G6PD cut-off values; Cohen's kappa analysis assessed the agreement between the two methods.
RESULTS: The sensitivity of FST at 30% cut-off G6PD activity level was 91.0%, (95% CI: 57.0-100) and specificity of 97.0% (95% CI: 95.0-98.0). At 60% cut-off, the FST sensitivity sharply declined to 29.0% (95% CI: 19.0-40.0) with a specificity of 100% (95% CI: 98.0-100). The overall prevalence of G6PD deficiency was 5.1% as measured by FST and 17.8% by Biosensor 1 (p < 0.001).
CONCLUSIONS: In this study, FST missed a significant proportion of cases of intermediate G6PD levels. FST also misclassified several G6PD intermediate individuals as normal, rendering them susceptible to oxidative stress. Biosensor 1 reported a significantly higher prevalence of G6PD deficiency.
Methods: This was a cross-sectional study conducted in the Kelantan state of Malaysia. The questionnaire comprised 39 questions that covered areas such as donors' social demographic information, knowledge of transfusion-transmitted diseases, blood screening and donor eligibility and perceptions towards blood safety. The knowledge score was categorised as good or poor.
Results: Of the 450 distributed questionnaires, 389 were suitable for analysis. Only 18.5% of the donors had good knowledge, with 81.5% having poor knowledge. Less than 30% were aware that people with multiple sexual partners, bisexual people and male homosexual people are permanently deferred from blood donation. Only 29.4% agreed that donors are responsible if their blood causes infection. Furthermore, 39.3% assumed that they could check their HIV status through blood donation, and 10.3% and 5.4% of the respondents believed that donors are free from infection if they wear a condom during sex or only have oral sex when involved in prostitution, respectively.
Conclusion: Poor knowledge and notable misperceptions concerning safe blood donation were found among blood donors. The Ministry of Health should incorporate safe blood education in future public awareness programmes.
METHODS: Cord blood samples were collected from 300 newborns of healthy mothers. Hematological parameters were determined and hemoglobin quantitation for all cord blood samples were performed using capillary electrophoresis system (CES) and high performance liquid chromatography (HPLC).
RESULTS: Majority of cord blood samples (63%) revealed Hb AF followed by Hb AFA2 (20%). Hb AFE was detected in 10.7% with the mean value of Hb E ranging from 2.3%-11.1%.
CONCLUSION: Hemoglobin E was detected in cord blood using capillary electrophoresis system. It can be recommended in areas where Hb E/β is prevalent. Implementation of a screening strategy using CE on cord blood sampling will identify the disease early. With regular follow-up on these patients, the status of their disease can be determined earlier and appropriate management implemented.
CASE REPORT: A 3-month-old baby boy was presented with neonatal anaemia and mild hepatomegaly. Full blood count revealed severe hypochromic microcytic anaemia. There was an abundance of HbH inclusion bodies in his red blood cells. High-performance liquid chromatography showed a reduced HbA2 level with the presence of pre-run peak. Capillary electrophoresis showed the presence of HbH and Hb Barts. Molecular analysis found a common α0-thalassaemia (--SEA) in one allele and mutation in codon 125 in the other allele.
DISCUSSION: Non-deletional HbH disease due to a combination of deletional and non-deletional mutations may present with severe clinical manifestations than those with deletion mutations, which warrants accurate diagnosis using molecular techniques.
METHODS: For this cross-sectional study, patient blood samples that showed a positive peak in zone 2 of CE were selected. Hemoglobin and DNA of the samples were investigated to ascertain the presence and levels of non-deletional and deletional α thalassemia. The results were statistically analyzed.
RESULTS: Of the 137 samples investigated, 118 (86.1%) were positive for termination codon Hb CS mutation. Heterozygous Hb CS was found in 92 (67.2%), compound heterozygous Hb CS in 22 (16.1%), and homozygous Hb CS in four (2.9%) samples. The ranges of Hb CS level for heterozygous Hb CS, compound heterozygous Hb CS, and homozygous Hb CS were within 0.2-2.7%, 0.3-2.2%, and 4.5-5.5%, respectively. Significant hematological differences in the Hb level, mean cell volume, mean cell hemoglobin, red cell distribution width, red blood cell count, and Hb CS level were observed between heterozygous, homozygous, and compound heterozygous Hb CS.
CONCLUSIONS: In view of the overlapping prevalence range of Hb CS level for heterozygous and compound heterozygous Hb CS, only Hb CS level within the range 4.5-5.5% was helpful in the diagnosis of homozygous Hb CS.