Displaying all 2 publications

Abstract:
Sort:
  1. Zuraini Zainol, Azizi Ali, Mohd Safuan Che Din, Mohd Fadzil Akhir, Zainudin Bachok, Ahmad Ali
    MyJurnal
    Degradation of coastal water quality is one of the major concern in the Malacca Strait since this area is one of the most important fishing ground in Malaysia. Despite being great in the fishery industry, Malacca and Negeri Sembilan somehow recorded the lowest marine fishes landing, which raises a question about dynamics of this area. It is therefore, a preliminary study of the physical properties and nutrient concentrations carried out from 27 March to 4 April 2016 at the coastal water off the southern west coast of Peninsular Malaysia, specifically at Pulau Besar, Malacca and Tanjung Tuan, Negeri Sembilan. Data for temperature, salinity, and dissolved oxygen (DO) was acquired by using Conductivity, Temperature, and Depth (CTD) probe. Meanwhile, nutrient concentrations determination in this study was done by using a Westco Smartchem 200 Discrete Analyser, according to the procedure adopted from United States Environmental Protection Agency (USEPA). In general, results of this study indicated the coastal stations were characterised with cooler, less saline, and high DO waters than stations away from coast. Large sea surface heating and weak winds were determined as the causative factors affecting dynamics of water column at the study area. At nearshore area, temperature, salinity, and DO variability were modulated by degree of freshwater intrusion. High nutrient concentrations at the stations closer to the coast was believed to be associated with river outflow, which acted as the main source of nutrients supply in this area. Comparison to previous study had shown that nutrient concentrations in this research were low, which could contribute to an insight on declining marine fish catches in these two states. With regard to Malaysian Marine Water Quality Criteria and Standard (MWQCS), mean nutrient concentrations at the study area were in Class 1, which are suitable for marine parks and marine protected areas conservation. Regardless of limited scope, the outcome of this study is believed to be a good baseline reference for future studies seeking to understand coastal dynamics.
  2. Sirskyj D, Weltzin R, Golshani A, Anderson D, Bozic J, Diaz-Mitoma F, et al.
    J Virol Methods, 2010 Feb;163(2):459-64.
    PMID: 19913054 DOI: 10.1016/j.jviromet.2009.11.014
    Several critical factors of an influenza microneutralization assay, utilizing a rapid biotin-streptavidin conjugated system for detecting influenza virus subtypes A and B, are addressed within this manuscript. Factors such as incubation times, amount of virus, cell seeding, sonication, and TPCK trypsin were evaluated for their ability to affect influenza virus neutralization in a microplate-based neutralization assay using Madin-Darby canine kidney (MDCK) cells. It is apparent that the amount of virus used in the assay is the most critical factor to be optimized in an influenza microneutralization assay. Results indicate that 100xTCID(50) of influenza A/Solomon Islands/03/2006 (H1N1) virus overloads the assay and results in no, to low, neutralization, in both ferret and macaque sera, respectively, whereas using 6xTCID(50) resulted in significantly improved neutralization. Conversely, strong neutralization was observed against 100xTCID(50) of B/Malaysia/2506/04 virus. In this manuscript the critical factors described above were optimized and the results indicate that the described biotin-streptavidin conjugated influenza microneutralization assay is a rapid and robust method for detecting the presence of functional, influenza virus-neutralizing antibodies.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links