Displaying all 3 publications

Abstract:
Sort:
  1. Leong YK, Du M, Au PI, Clode P, Liu J
    Langmuir, 2018 08 21;34(33):9673-9682.
    PMID: 30053778 DOI: 10.1021/acs.langmuir.8b00213
    Purified sodium montmorillonite (SWy-2) gels of a few percent solids displayed pronounced time-dependent rheological or aging behavior with a long time scale. The aging behavior was characterized by an increasing yield stress with rest time. This increase continued even after a week of rest. An open sponge-like cellular microstructure of the aged gels was captured by cryo-SEM with samples prepared at high pressure. The size of the openings of the cellular structure is small, generally less than 1 μm formed by thin flexible platelet with curling edges. This structure was formed by strong attractive and repulsive forces. The rapid yield stress increase in the early stage of aging is due to rapid bond formation occurring between network platelets and free individual platelet, isolated aggregates, and platelet particles in network with free edges. Over time, all platelets are bonded in the network. During aging, the platelets in the structure would have to adjust continually in response to a net force acting on it by its neighbors. The high concentration of platelets responding to this force imbalance is the cause of the long aging time scale. The operation of the attractive and repulsive forces, and the shape and charge properties of the platelets are responsible for the cellular structure being built. At complete structural recovery, the structure should attain the state of lowest free energy. The repulsive force regulates the development of the microstructure. The aging data of the 3.3 wt % gel were fitted by different aging models.
  2. Chang YS, Au PI, Mubarak NM, Khalid M, Jagadish P, Walvekar R, et al.
    Environ Sci Pollut Res Int, 2020 Sep;27(26):33270-33296.
    PMID: 32529626 DOI: 10.1007/s11356-020-09423-7
    Two superior adsorbents, namely bentonite and graphene oxide (GO), were hybridised to study the removal of copper and nickel ions from synthetic and industrial wastewater. The as-synthesised GO, bentonite/GO and bentonite were characterised by Fourier transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy and N2 adsorption-desorption analysis. The factors influencing the adsorption behaviours including contact time, initial solution pH, ionic strength, initial concentration of metal ions, temperature and adsorbent dosage were systematically investigated by batch equilibrium method. The adsorption equilibrium for copper and nickel onto bentonite was attained in 90 min while equilibrium was reached in 60 min on bentonite/GO. The adsorption of copper and nickel was pH-dependent in the range from pH 2 to pH 7 and from pH 2 to pH 8. Pseudo-first-order kinetic model excellently described the adsorption of copper and nickel onto bentonite and bentonite/GO. The equilibrium adsorption data was well described by the Langmuir isotherm model and the maximum adsorption capacity was 248.9 mg/g, 558.4 mg/g, 215.8 mg/g and 402.5 mg/g for bentonite-copper, bentonite/GO-copper, bentonite-nickel and bentonite/GO-nickel adsorption systems, respectively. The bentonite/GO composite exhibited a higher adsorption capacity of both cations from synthetic wastewater than pure bentonite owning to the synergistic effect between bentonite and GO. In all adsorption studies, copper was more efficiently removed than nickel due to its higher tendency to form bond with adsorbent surfaces. The adsorption of copper and nickel on bentonite/GO was mainly due to cation exchange, intermolecular and electrostatic interactions and physisorption dominated the adsorption processes. The practical application of bentonite/GO on adsorption of copper was investigated using real wastewater and its removal efficiency was beyond 98%. The excellent adsorption performances of composites for the copper and nickel removal from wastewater demonstrated its significant potential for pollution mitigations.
  3. Chai JB, Au PI, Mubarak NM, Khalid M, Ng WP, Jagadish P, et al.
    Environ Sci Pollut Res Int, 2020 Apr;27(12):13949-13962.
    PMID: 32036527 DOI: 10.1007/s11356-020-07755-y
    Adsorption capacity and percentage removal efficiency of Cu(II) and Ni(II) ions were studied and compared between raw kaolinite and acid-activated kaolinite. Acid-activated kaolin was prepared by refluxing raw kaolinite with concentrated sulphuric acid followed by calcination to enhance its surface properties and adsorption ability. Both raw and acid-activated kaolinite samples were characterized by Fourier transform infrared spectroscopy, energy dispersive X-ray, scanning electron micrograph and zeta potential analysis. Upon acid treatment, acid-activated kaolinite was discovered to have altered chemical composition and larger BET surface area as compared with raw kaolinite. The batch adsorption studies on aqueous solution were performed under different factors such as contact time, pH condition, adsorbent dosage, initial metal ion concentration and temperature. The optimum condition was selected for each factor including a contact time of 60 min, pH of 7.0, adsorbent dosage of 0.1 g, initial metal ion concentration of 100 mg/L and temperature of 25 °C. Then, the adsorption studies on wastewater samples were carried out at the selected optimum conditions. Acid-activated kaolinite always had better adsorption capacity and percentage removal efficiency than raw kaolinite due to the increasing amount of negative charges on the adsorbent surface and the number of metal ion binding sites upon acid treatment. The adsorption kinetic obtained was well described by the pseudo-second-order model, whereas the adsorption isotherms obtained were well described by either the Freundlich or the Langmuir adsorption model. The results showed that acid-activated kaolinite adsorbent is a better option as a favourable and feasible commercial low-cost adsorbent for wastewater treatment.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links