Mud crabs (Scylla spp.) are commercially important crustacean species that can be found throughout the Indo-West Pacific region. During culture, the induction of ovarian maturation is important to meet the consumer demand for mature mud crabs and hasten seed production. Eyestalk ablation is an effective tool to enhance ovarian maturation in mud crabs. However, there is no standard protocol for the eyestalk ablation of mud crabs. In this study, two eyestalk ablation techniques are described: cauterization (the use of hot metal to ablate the eyestalk of an anesthetized crab) and surgery (the removal of the eyestalk using surgical scissors). Before eyestalk ablation, sexually mature females (CW > 86 mm) were anesthetized using an ice bag (-20 °C) with seawater. When the water temperature reached 4 °C, the ice bag was removed from the water. Flowing seawater (ambient temperature: 28 °C) was used for recovery from the anesthesia immediately after eyestalk ablation. Mortality did not occur during or after the process of eyestalk ablation. The eyestalk ablation protocol presented here accelerated the ovarian maturation of the mud crabs.
This study was carried out to determine the physiological changes (survival, growth, molting cycle, sex differentiation, and gill condition) of mud crab, Scylla paramamosain crablet at different water temperatures of 24, 28 and 32 °C, and ambient temperature of 27 to 30 °C. Thermoregulatory behavior, represented by preferred temperature (29.83 ± SD 2.47 °C), critical thermal minimum (17.33 ± SD 0.58 °C), critical thermal maximum (40 ± SD 0.00 °C), and thermal tolerance interval (22.67 ± SD 0.58 °C), were checked for Crablet 1 stage only (with ambient temperature as acclimation temperature).Both low (24 °C) and high (32 °C) temperatures were associated with lower growth performance, and survival rate (p < 0.05), in comparison with both 28 °C and ambient temperature treatments.Male ratio at low temperaturetreatment (24 °C) was higher (80.09 ± SD 18.86%) than for other treatments (p < 0.05), observed as 44.81 ± D 10.50%, 41.94 ± SD 19.44%, and 76.30 ± SD 5.13% for 28 °C, 32 °C and ambient temperature treatments, respectively. However, there was no significant difference observed between 24 °C, 28 °C, and ambient temperature treatments. Anatomical alterations of gill lamellae of S. paramamosain crablet for both 32 °C, and 24 °C treatments, appeared thinner and paler than at both 28 °C, and ambient temperature treatments. Based on this study, temperature of 28 to 30 °C was recommended as the optimal temperature for the long-term nursery phase of S. paramamosain.