Displaying all 14 publications

Abstract:
Sort:
  1. Nurul Asyikeen, A.M., Jaswir, I., Akmeliawati, R., Ibrahim, A.M., Aslam, M., Octavianti, F.
    MyJurnal
    This study has been successfully conducted to develop a method for rapid detection of ethanol (EtOH) concentration in beverages using Portable Electronic Nose (E-Nose) developed by International Islamic University Malaysia (IIUM). E-Nose is widely used in food analysis. However, E-Noses used in the food industry are big and not portable. The very recently developed portable device used in this study is very handy and practical for use. Results from this study revealed that the device could be used for rapid detection of ethanol concentration in various beverages such as alcoholic beverages, isotonic drinks, soft drinks and fruit juices from different brands sold in Malaysia. From the result obtained, it was shown that the device has high accuracy and reliability where it could detect ethanol concentration as low as 0.1% (v/v). The analytical condition for the detection was achieved with the lowest voltage output of 0.43V. While for optimization analysis using Response Surface Methodology (RSM), optimum Headspace Generated Time (HGT) and bottle’s volume (mL) obtained are 0.66h and 100 mL, respectively.
  2. Ali S, Jorge J, Aslam M, Kashif M
    Sci Rep, 2024 Jan 24;14(1):2092.
    PMID: 38267592 DOI: 10.1038/s41598-024-52619-x
    In this article, an attribute control chart is proposed when the lifetime of a product follows a Weibull distribution in two-stage sampling, which is based on the number of failures from a truncated life test. The coefficients of the proposed double sampling attribute control chart and the test duration are determined so that the average run length when the process is in control is close to the target value. An overview is reported on how double sampling np control charts work. Tables reporting the out-of-control average run lengths are given for various shift parameters. A case study is given to illustrate the proposed control chart for industrial use. A comparison of two-stage and single-stage sampling of failure of products is discussed.
  3. Aslam M, Abdullah AZ, Rafatullah M, Fawad A
    PMID: 35083668 DOI: 10.1007/s11356-021-18066-1
    The seed extract of Abelmoschus esculentus (AE), also known as Okra, was used as a source of reducing and capping agents to synthesized biogenic titanium dioxide nanoparticles (TiO2 NPs) due to its rich flavonoid contents. The synthesized AE-TiO2 nanoparticles were further evaluated by the effect of loading of TiO2 NPs and irradiation time on the photocatalytic degradation of methylene blue dye. The synthesized TiO2 NPs were then characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), energy dispersive X-ray spectroscopy (EDS), Fourier transformed infrared (FTIR) spectroscopy, Raman spectra, UV-visible spectrophotometry, and particle size distribution (PSD). The findings confirmed the successful synthesis of the spherical anatase phase of TiO2 NPs, as well as the existence of phytochemicals in the extract, which were involved in the capping/stabilization of NPs. The synthesized TiO2 NPs were found to be 60-120 nm in size and almost uniformly distributed throughout the sample. The photocatalytic activity measured in a 300 mL cylindrical photochemical reactor and irradiated with 250 watts UV lamp was investigated based on methylene blue degradation. Effects of irradiation time and catalyst loading were elucidated and correlated with the characteristics of the catalysts. The findings revealed that the synthesized TiO2 NPs were well-dispersed, stable, and could achieve more than 80 % degradation in 240 min of irradiation with 90 mg/L of AE-TiO2 NPs loading compared to only 70 % by the commercial one. These results suggested that AE-TiO2 NPs possesses significant catalytic activity, and the photocatalytic process could be used to degrade, decolorize, and mineralize the methylene blue dye. The polyphenolic tannins present in the extract were the reason behind the desirable characteristics of the nanoparticles and better photocatalytic activity of AE-TiO2 NPs.
  4. Jahangir MA, Gilani SJ, Muheem A, Jafar M, Aslam M, Ansari MT, et al.
    Pharm Nanotechnol, 2019;7(3):234-245.
    PMID: 31486752 DOI: 10.2174/2211738507666190429113906
    BACKGROUND: The amalgamation of biological sciences with nano stuff has significantly expedited the progress of biological strategies, greatly promoting practical applications in biomedical fields.

    OBJECTIVE: With distinct optical attributes (e.g., robust photostability, restricted emission spectra, tunable broad excitation, and high quantum output), fluorescent quantum dots (QDs) have been feasibly functionalized with manageable interfaces and considerably utilized as a new class of optical probe in biological investigations.

    METHODS: In this review article, we structured the current advancements in the preparation methods and attributes of QDs. Furthermore, we extend an overview of the outstanding potential of QDs for biomedical research and radical approaches to drug delivery.

    CONCLUSION: Notably, the applications of QDs as smart next-generation nanosystems for neuroscience and pharmacokinetic studies have been explained. Moreover, recent interests in the potential toxicity of QDs are also apprised, ranging from cell investigations to animal studies.

  5. Ibrahim M, Haider A, Lim JW, Mainali B, Aslam M, Kumar M, et al.
    Chemosphere, 2024 Jul 15;362:142860.
    PMID: 39019174 DOI: 10.1016/j.chemosphere.2024.142860
    The application of artificial neural networks (ANNs) in the treatment of wastewater has achieved increasing attention, as it enhances the efficiency and sustainability of wastewater treatment plants (WWTPs). This paper explores the application of ANN-based models in WWTPs, focusing on the latest published research work, by presenting the effectiveness of ANNs in predicting, estimating, and treatment of diverse types of wastewater. Furthermore, this review comprehensively examines the applicability of the ANNs in various processes and methods used for wastewater treatment, including membrane and membrane bioreactors, coagulation/flocculation, UV-disinfection processes, and biological treatment systems. Additionally, it provides a detailed analysis of pollutants viz organic and inorganic substances, nutrients, pharmaceuticals, drugs, pesticides, dyes, etc., from wastewater, utilizing both ANN and ANN-based models. Moreover, it assesses the techno-economic value of ANNs, provides cost estimation and energy analysis, and outlines promising future research directions of ANNs in wastewater treatment. AI-based techniques are used to predict parameters such as chemical oxygen demand (COD) and biological oxygen demand (BOD) in WWTP influent. ANNs have been formed for the estimation of the removal efficiency of pollutants such as total nitrogen (TN), total phosphorus (TP), BOD, and total suspended solids (TSS) in the effluent of WWTPs. The literature also discloses the use of AI techniques in WWT is an economical and energy-effective method. AI enhances the efficiency of the pumping system, leading to energy conservation with an impressive average savings of approximately 10%. The system can achieve a maximum energy savings state of 25%, accompanied by a notable reduction in costs of up to 30%.
  6. Khan MM, Asghar HMA, Saulat H, Chawla M, Rafiq S, Khan MM, et al.
    Water Environ Res, 2021 Sep;93(9):1554-1561.
    PMID: 33583113 DOI: 10.1002/wer.1537
    Hazardous industrial wastes negatively impact the environment by creating issues for aquatic as well as human's life. This study investigates the treatment of hazardous industrial wastewater using cost-effective graphite adsorbent along with electrochemical regeneration integrated with renewable solar energy. The synthetic industrial effluent containing crystal violet dye was treated using an adsorbent (Nyex™ 1000) having a surface area of 1.0 m2  g-1 . The efficiency of removing solute was found to be more than 90%. The adsorbent regeneration efficiency was achieved at 99.5% by passing a charge of 100 C g-1 at current density of 10 mA cm-2 for 1 h. Solar energy was integrated with electrochemical reactor for the regeneration of adsorbent to make the system cost-effective and self-sustainable. PRACTITIONER POINTS: Industrial hazardous wastewater treatment with a cost-effective graphite integrated adsorbent. Development of renewable solar energy-integrated with electrochemical system for regeneration. Regeneration efficiency of adsorbent Nyex™ 1000 was achieved around 99.5% with integrated system. Sustainable system was introduced to incorporate with renewable energy for waste water treatment.
  7. Eliseus A, Bilad MR, Nordin NAHM, Khan AL, Putra ZA, Wirzal MDH, et al.
    J Environ Manage, 2018 Dec 15;228:529-537.
    PMID: 30273771 DOI: 10.1016/j.jenvman.2018.09.029
    Membrane fouling is a major challenge in membrane bioreactors (MBRs) and its effective handling is the key to improve their competitiveness. Tilting panel system offers significant improvements for fouling control but is strictly limited to one-sided panel. In this study, we assess a two-way switch tilting panel system that enables two-sided membranes and project its implications on performance and energy footprint. Results show that tilting a panel improves permeance by up to 20% to reach a plateau flux thanks to better contacts between air bubbles and the membrane surface to scour-off the foulant. A plateau permeance could be achieved at aeration rate of as low as 0.90 l min-1, a condition untenable by vertical panel even at twice of the aeration rate. Switching at short periods (<5min) can maintain the hydraulic performance as in no-switch (static system), enables application of a two-sided switching panel. A comparison of vertical panel under 1.80 l min-1 aeration rate with a switching panel at a half of the rate, switched at 1 min period shows ≈10% higher permeance of the later. Since periodic switching consumes a very low energy (0.55% of the total of 0.276 kWh m-3), with reduction of aeration by 50%, the switching tilted panel offers 41% more energy efficient than a referenced full-scale MBR (0.390 kWh m-3). Overall results are very compelling and highly attractive for significant improvements of MBR technologies.
  8. Waqas S, Bilad MR, Man Z, Wibisono Y, Jaafar J, Indra Mahlia TM, et al.
    J Environ Manage, 2020 Aug 15;268:110718.
    PMID: 32510449 DOI: 10.1016/j.jenvman.2020.110718
    Integrated fixed-film activated sludge (IFAS) process is considered as one of the leading-edge processes that provides a sustainable solution for wastewater treatment. IFAS was introduced as an advancement of the moving bed biofilm reactor by integrating the attached and the suspended growth systems. IFAS offers advantages over the conventional activated sludge process such as reduced footprint, enhanced nutrient removal, complete nitrification, longer solids retention time and better removal of anthropogenic composites. IFAS has been recognized as an attractive option as stated from the results of many pilot and full scales studies. Generally, IFAS achieves >90% removals for combined chemical oxygen demand and ammonia, improves sludge settling properties and enhances operational stability. Recently developed IFAS reactors incorporate frameworks for either methane production, energy generation through algae, or microbial fuel cells. This review details the recent development in IFAS with the focus on the pilot and full-scale applications. The microbial community analyses of IFAS biofilm and floc are underlined along with the special emphasis on organics and nitrogen removals, as well as the future research perspectives.
  9. Sarwar B, Khan AU, Aslam M, Bokhari A, Mubashir M, Alothman AA, et al.
    Environ Res, 2023 Mar 01;220:115168.
    PMID: 36584838 DOI: 10.1016/j.envres.2022.115168
    The inherent toxicity, mutagenicity and carcinogenicity of dyes that are discharged into aquatic ecosystems, harming the health of humans and animals. ZIF-8 based composites are regarded as good adsorbents for the breakdown of dyes in order to remove or degrade them. In the course of this research, metal-organic framework materials known as ZIF-8 and its two stable composites, ZIF-8/BiCoO3 (MZBC) and ZIF-8/BiYO3 (MZBY), were produced via a hydrothermal process and solvothermal process, respectively, for the dangerous Congo red (CR) dye removal from the solution in water using adsorption method. According to the findings, the most significant amount of CR dye that could be adsorbed is onto MZBC, followed by MZBY and ZIF-8. The pseudo-second-order kinetic model was used effectively to match the data for adsorption behavior and was confirmed using the Langmuir isotherm equation. There is a possibility that the pH and amount of adsorbent might influence the adsorption behavior of the adsorbents. According to the experiment results, the technique featured an endothermic adsorption reaction that spontaneously occurred. The higher adsorption capability of MZBC is because of the large surface area. This results in strong interactions between the functional groups on the surface of MZBC and CR dye molecules. In addition to the electrostatic connection between functional group Zn-O-H on the surface of ZIF-8 in MZBC and the -NH2 or SO3 functional group areas in CR molecules, it also includes the strong π-π interaction of biphenyl rings.
  10. Shakoor A, Khan AL, Akhter P, Aslam M, Bilad MR, Maafa IM, et al.
    Environ Sci Pollut Res Int, 2021 Mar;28(10):12397-12405.
    PMID: 32651793 DOI: 10.1007/s11356-020-10044-3
    Mixed matrix membranes (MMMs) were fabricated by the hydrothermal synthesis of ordered mesoporous KIT-6 type silica and incorporating in polyimide (P84). KIT-6 and MMMs were characterized to evaluate morphology, thermal stability, surface area, pore volume, and other characteristics. SEM images of synthesized MMMs and permeation data of CO2 suggested homogenous dispersion of mesoporous fillers and their adherence to the polymer matrix. The addition of KIT-6 to polymer matrix improved the permeability of CO2 due to the increase in diffusivity through porous particles. The permeability was 3.2 times higher at 30% loading of filler. However, selectivity showed a slight decrease with the increase in filler loadings. The comparison of gas permeation results of KIT-6 with the well-known MCM-41 revealed that KIT-6 based MMMs showed 14% higher permeability than that of MMMs composed of mesoporous MCM-41. The practical commercial viability of synthesized membranes was examined under different operating temperatures and mixed gas feeds. Mesoporous KIT-6 silica is an attractive additive for gas permeability enhancement without compromising the selectivity of MMMs. Graphical abstract.
  11. Masood S, Alkubaisi NA, Aslam M, Salman M, Baraka MA, Mustafa ZU, et al.
    Healthcare (Basel), 2023 Oct 20;11(20).
    PMID: 37893851 DOI: 10.3390/healthcare11202777
    The World Health Organization (WHO) declared the monkeypox outbreak a public health emergency in June 2022. In Pakistan, positive cases of monkeypox were reported in April 2023. Healthcare workers (HCWs) are considered as a front-line force to combat such outbreaks. A questionnaire-based cross-sectional study was conducted among 11 public sector educational institutions in Punjab, Pakistan, during May and June 2023 among final year medical, pharmacy, and nursing students concerning their knowledge of monkeypox. This included the signs/symptoms of monkeypox. Healthcare students were chosen as they are the HCWs of tomorrow. A total of 389 healthcare students participated in the study, with a mean age of 23.17 ± 1.72 years, and the majority were female. The mean knowledge score was 17.69 ± 4.55 (95% CI 17.24-18.14) out of a maximum total knowledge score of 26 (each correct answer was given a score of 1). The proportion of students with good, moderate, and poor knowledge was 21.6%, 43.2%, and 35.2%, respectively. Age (p = 0.017), gender (p < 0.001), and education (p < 0.001) had a significant impact on the knowledge score. In the multivariate linear regression model, education was the only significant factor linked to knowledge scores. Overall, the majority of future HCWs had moderate knowledge of monkeypox. Consequently, educational activities are needed to improve monkeypox-related knowledge among future HCWs. Furthermore, emerging infectious diseases should be routinely incorporated into HCW curricula.
  12. Aslam M, Ahmad R, Yasin M, Khan AL, Shahid MK, Hossain S, et al.
    Bioresour Technol, 2018 Dec;269:452-464.
    PMID: 30145004 DOI: 10.1016/j.biortech.2018.08.050
    Biohydrogen as one of the most appealing energy vector for the future represents attractive avenue in alternative energy research. Recently, variety of biohydrogen production pathways has been suggested to improve the key features of the process. Nevertheless, researches are still needed to overcome remaining barriers to practical applications such as low yields and production rates. Considering practicality aspects, this review emphasized on anaerobic membrane bioreactors (AnMBRs) for biological hydrogen production. Recent advances and emerging issues associated with biohydrogen generation in AnMBR technology are critically discussed. Several techniques are highlighted that are aimed at overcoming these barriers. Moreover, environmental and economical potentials along with future research perspectives are addressed to drive biohydrogen technology towards practicality and economical-feasibility.
  13. Ahmed A, Abu Bakar MS, Hamdani R, Park YK, Lam SS, Sukri RS, et al.
    Environ Res, 2020 07;186:109596.
    PMID: 32361527 DOI: 10.1016/j.envres.2020.109596
    Biochar production from invasive species biomass discarded as waste was studied in a fixed bed reactor pyrolysis system under different temperature conditions for value-added applications. Prior to pyrolysis, the biomass feedstock was characterized by proximate, ultimate, and heating value analyses, while the biomass decomposition behavior was examined by thermogravimetric analysis. The heating values of the feedstock biomass ranged from 18.65 to 20.65 MJ/kg, whereas the volatile matter, fixed carbon, and ash content were 61.54-72.04 wt %, 19.27-26.61 wt % and 1.51-1.86 wt %, respectively. The elemental composition of carbon, hydrogen, and oxygen in the samples was reported to be in the range of 47.41-48.47 wt %, 5.50-5.88 wt % and 46.10-45.18 wt %, respectively, while the nitrogen and sulphur content in the biomass samples were at very low concentrations, making it more useful for valorization from environmental aspects. The biochar yields were reported in the range of 45.36-58.35 wt %, 28.63-44.38 wt % and 22.68-29.42 wt % at a pyrolysis temperature of 400 °C, 500 °C, and 600 °C, respectively. The biochars were characterized from ultimate analysis, heating value, energy densification ratio, energy yield, pH, Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy and energy dispersive X-ray spectrometry (SEM and EDX), to evaluate their potential for value-added applications. The carbon content, heating value, energy densification ratio, and the porosity of the biochars improved with the increase in pyrolysis temperature, while the energy yield, hydrogen, oxygen, and nitrogen content of the biochars decreased. This study revealed the potential of the valorization of underutilized discarded biomass of invasive species via a pyrolysis process to produce biochar for value-added applications.
  14. Shen J, Hao C, Yuan S, Chen W, Tong T, Chen Y, et al.
    Brain Res, 2024 Mar 01;1826:148715.
    PMID: 38142722 DOI: 10.1016/j.brainres.2023.148715
    BACKGROUND: The treatment of depression with acupuncture has been documented. The mechanism behind acupuncture's curative and preventative effects is still unknown.

    METHODS: The current study examined the effects of acupuncture on depression-like behaviors in a rat model of chronic unpredictable mild stress (CUMS), while also exploring its potential mechanisms. A total of six groups of rats were randomly assigned: control, CUMS, acupuncture, fluoxetine, acupoint catgut embedding and sham acupoint catgut embedding. Fluoxetine (2.1 mg/kg) and acupoint catgut embedding were used for comparative research to acupuncture. The modelling evaluation is measured by body weight and behavior tests. Western blotting and reverse transcription-polymerase chain reaction were used to detect the proteins and mRNA expression of Silent information regulator 1 (Sirt1)/ nuclear factor-erythroid 2-related factor 2 (Nrf2)/ heme oxygenase-1 (HO-1)/ Glutathione peroxidase 4 (GPX4) pathway in the hippocampus. The expression of oxidative stress (OS)-related proteins and inflammatory cytokines in the serum was detected with ELISA. Immunofluorescence showed microglia and astrocytes activity in the hippocampus.

    RESULTS: Acupuncture and fluoxetine could alleviate CUMS-induced depression-like behaviors. Acupuncture was also found to effectively reverse the levels of MDA, SOD, GSH, GSH-PX and T-AOC, IL-1β, IL-6 and TNF-α in the serum of CUMS-induced rats. Rats with CUMS showed decreased levels of Sirt1, Nrf2, HO-1 and GPX4 in the hippocampus, while acupuncture treatment could partly reverse the diminished effects. In addition, acupuncture treatment significantly reduced the activation of hippocampal microglia and astrocytes in CUMS-induced rats.

    CONCLUSION: The study's findings indicate that acupuncture has the potential to mitigate depression-like behaviors in rats induced with CUMS by mitigating OS and reducing neuroinflammation.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links