Displaying all 3 publications

Abstract:
Sort:
  1. Hu S, Anschuetz L, Hall DA, Caversaccio M, Wimmer W
    Trends Hear, 2021 3 6;25:2331216520986303.
    PMID: 33663298 DOI: 10.1177/2331216520986303
    Residual inhibition, that is, the temporary suppression of tinnitus loudness after acoustic stimulation, is a frequently observed phenomenon that may have prognostic value for clinical applications. However, it is unclear in which subjects residual inhibition is more likely and how stable the effect of inhibition is over multiple repetitions. The primary aim of this work was to evaluate the effect of hearing loss and tinnitus chronicity on residual inhibition susceptibility. The secondary aim was to investigate the short-term repeatability of residual inhibition. Residual inhibition was assessed in 74 tinnitus subjects with 60-second narrow-band noise stimuli in 10 consecutive trials. The subjects were assigned to groups according to their depth of suppression (substantial residual inhibition vs. comparator group). In addition, a categorization in normal hearing and hearing loss groups, related to the degree of hearing loss at the frequency corresponding to the tinnitus pitch, was made. Logistic regression was used to identify factors associated with susceptibility to residual inhibition. Repeatability of residual inhibition was assessed using mixed-effects ordinal regression including poststimulus time and repetitions as factors. Tinnitus chronicity was not associated with residual inhibition for subjects with hearing loss, while a statistically significant negative association between tinnitus chronicity and residual inhibition susceptibility was observed in normal hearing subjects (odds ratio: 0.63; p = .0076). Moreover, repeated states of suppression can be stably induced, reinforcing the use of residual inhibition for within-subject comparison studies.
  2. Hu S, Hall DA, Zubler F, Sznitman R, Anschuetz L, Caversaccio M, et al.
    Hear Res, 2021 10;410:108338.
    PMID: 34469780 DOI: 10.1016/j.heares.2021.108338
    Recently, Bayesian brain-based models emerged as a possible composite of existing theories, providing an universal explanation of tinnitus phenomena. Yet, the involvement of multiple synergistic mechanisms complicates the identification of behavioral and physiological evidence. To overcome this, an empirically tested computational model could support the evaluation of theoretical hypotheses by intrinsically encompassing different mechanisms. The aim of this work was to develop a generative computational tinnitus perception model based on the Bayesian brain concept. The behavioral responses of 46 tinnitus subjects who underwent ten consecutive residual inhibition assessments were used for model fitting. Our model was able to replicate the behavioral responses during residual inhibition in our cohort (median linear correlation coefficient of 0.79). Using the same model, we simulated two additional tinnitus phenomena: residual excitation and occurrence of tinnitus in non-tinnitus subjects after sensory deprivation. In the simulations, the trajectories of the model were consistent with previously obtained behavioral and physiological observations. Our work introduces generative computational modeling to the research field of tinnitus. It has the potential to quantitatively link experimental observations to theoretical hypotheses and to support the search for neural signatures of tinnitus by finding correlates between the latent variables of the model and measured physiological data.
  3. Hu S, Anschuetz L, Huth ME, Sznitman R, Blaser D, Kompis M, et al.
    JMIR Res Protoc, 2019 Jan 09;8(1):e12270.
    PMID: 30626571 DOI: 10.2196/12270
    BACKGROUND: Electroencephalography (EEG) studies indicate possible associations between tinnitus and changes in the neural activity. However, inconsistent results require further investigation to better understand such heterogeneity and inform the interpretation of previous findings.

    OBJECTIVE: This study aims to investigate the feasibility of EEG measurements as an objective indicator for the identification of tinnitus-associated neural activities.

    METHODS: To reduce heterogeneity, participants served as their own control using residual inhibition (RI) to modulate the tinnitus perception in a within-subject EEG study design with a tinnitus group. In addition, comparison with a nontinnitus control group allowed for a between-subjects comparison. We will apply RI stimulation to generate tinnitus and nontinnitus conditions in the same subject. Furthermore, high-frequency audiometry (up to 13 kHz) and tinnitometry will be performed.

    RESULTS: This work was funded by the Infrastructure Grant of the University of Bern, Bern, Switzerland and Bernafon AG, Bern, Switzerland. Enrollment for the study described in this protocol commenced in February 2018. Data analysis is currently under way and the first results are expected to be submitted for publication in 2019.

    CONCLUSIONS: This study design helps in comparing the neural activity between conditions in the same individual, thereby addressing a notable limitation of previous EEG tinnitus studies. In addition, the high-frequency assessment will help to analyze and classify tinnitus symptoms beyond the conventional clinical standard.

    INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): RR1-10.2196/12270.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links