Displaying all 3 publications

Abstract:
Sort:
  1. Helna AK, Aneesh PT, Kumar AB, Ohtsuka S
    Zool Stud, 2023;62:e51.
    PMID: 38046785 DOI: 10.6620/ZS.2023.62-51
    Glyptothoa sagara gen. and sp. nov. is described from the host fish Glyptophidium macropus Alcock, 1894 (Ophidiidae), at depths 300 to 650 metres from the southwest coast of India. The mitochondrial cytochrome c oxidase subunit I (COI) gene of the species was sequenced and compared with other closely related branchial cymothoid genera. Both morphological and molecular data corroborate the inclusion of this parasitic isopod as a new genus, and we describe Glyptothoa sagara gen. and sp. nov. The following combinations of characters characterise the genus: cephalon immersed in pereonite 1; dorsum vaulted; all coxae visible in dorsal view; coxae shorter than or as long as pereonites; pereonites 4-7 slightly decrease in width towards one side, slightly asymmetrical, lateral margins slightly constricted, in hunched side; relatively wide pleon, with large lateral gaps between pleonites; antennula narrowly separated by rostrum, slender, shorter than antenna; antenna with 13 articles, buccal cone obscuring antennal bases; brood pouch arising from coxae 1-4, 6; oostegite 1 bilobed; pleopods rami all simple, without proximomedial lamellar lobe, without folds or thickened ridges. The adult life stages, such as females (ovigerous and non-ovigerous), males and transitional stage of the new species are described. The species is currently known only from the type locality and the type host. The ecological remarks of the newly described taxon are also provided. The following species are transferred from Elthusa Schioedte and Meinert, 1884: Glyptothoa myripristae (Bruce, 1990) comb. nov., Glyptothoa propinqua (Richardson, 1904) comb. nov. and Glyptothoa caudata (Schioedte and Meinert, 1884) comb. nov.
  2. Aneesh PT, Ohtsuka S, Kondo Y, Helna AK
    Acta Parasitol, 2024 Mar;69(1):874-888.
    PMID: 38468018 DOI: 10.1007/s11686-024-00820-3
    PURPOSE: The present paper describes two new genera and species of the parasitic copepod family Chondracanthidae Milne Edwards, 1840 based on specimens collected from two species of deep-sea fishes at a depth of 212 m off Suruga Bay, Japan. Avatar nishidai gen. et sp. nov. is described from the host fish Chaunax abei Le Danois, 1978 (Chaunacidae). Kokeshioides surugaensis gen. et sp. nov. is described from the host fish Setarches longimanus (Alcock, 1894) (Setarchidae).

    METHODS: Fresh specimens of chondracanthids were collected from the buccal cavity of two species of deep-sea fishes (fish hosts were frozen), Chaunax abei Le Danois, 1978 (Lophiiformes: Chaunacidae) and Setarches longimanus (Alcock, 1894) (Perciformes: Setarchidae), caught at a depth of 212 m in Suruga Bay, Japan (34° 37'48.87″ N, 138° 43'2.958″ E). Both the species are described and illustrated based on ovigerous females.

    RESULTS: The genus Avatar gen. nov. can readily be distinguished from all other chondracanthid genera by the following combination of features: cephalothorax slightly wider than long with anterior pair of large and posterior pair of small lateral lobes, and two pairs of ventro-lateral processes; the very posteriormost part of the first pedigerous somite contributes to the neck; cylindrical trunk with two pairs of blunt proximal fusiform processes; antennule with small knob terminally; antenna bearing distal endopodal segment; labrum protruding ventrally; two pairs of biramous legs each with 2-segmented rami. Kokeshioides gen. nov. has the following combinations of features that distinguish it from other chondracanthid genera: body flattened, without lateral processes; cephalothorax much wider than long, with paired anterolateral and posterolateral lobes, folded ventrally; the very posteriormost part of the first pedigerous somite contributes to the neck; mandible elongate; legs unique, heavily sclerotized, represented by two pairs of acutely pointed processes.

    CONCLUSION: With the addition of two new genera presently reported, the family Chondracanthidae currently includes 52 valid genera. Among the described genera Avatar gen. nov. seems to be very primitive, while Kokeshioides gen. nov. is highly advanced. The deduced evolutionary history of chondracanthid genera is also discussed.

  3. Kondo Y, Ohtsuka S, Nawata M, Nishida Y, Komeda S, Iwasaki S, et al.
    Dis Aquat Organ, 2024 Mar 14;157:81-94.
    PMID: 38483243 DOI: 10.3354/dao03773
    Before 2019, adults of the sea louse Caligus undulatus were reported exclusively in plankton from ocean samples worldwide and were not known to parasitize fish hosts. In 2019, the first instance of this caligid parasitizing a fish host, Japanese sardinella Sardinella zunasi, was reported in the Seto Inland Sea, Japan. The presently reported study aimed to investigate the biology and ecology of adult C. undulatus in plankton communities in the Seto Inland Sea and surrounding waters from March 2020 to November 2021. The occurrence of sea lice in plankton communities was restricted to the period of August-January, mainly between October and December with maximum plankton abundance (10.5 ind. per 1000 m3) recorded on 30 November 2020. All post-naupliar stages of C. undulatus were found on the host fish, and they represented a typical life cycle pattern known for Caligus species. The sex ratios in both planktonic and parasitic adults were not significantly different. The frequency of occurrence of planktonic and parasitic adult females with egg strings was 68 and 46%, respectively. The number of eggs per string was significantly higher in parasitic adult females (mean ± SD: 16.9 ± 8.6) than in planktonic females (10.4 ± 10.8). These data suggest that adult females were detached from their hosts and continued to produce eggs without feeding. Seasonal migration of S. zunasi to brackish water for spawning may result in the detachment of mature caligids from the host and may be effective in protecting the offspring, which are less tolerant of less brackish water.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links