Displaying all 3 publications

Abstract:
Sort:
  1. An C, Xue H, Dong Z, Xiao D, Xue J, Yan J, et al.
    ACS Omega, 2023 Aug 15;8(32):29346-29358.
    PMID: 37599934 DOI: 10.1021/acsomega.3c02431
    Hybrid sedimentary rocks (HSR) represent a significant reservoir type in fine-grained sediments. However, the classification and understanding of HSR reservoirs, including their storage mechanisms and identification of optimal "sweet spots," have been limited due to the lack of clarity regarding the multiple sources of components and their mixing processes. This study focuses on the Lucaogou formation of Jimusaer Sag and aims to highlight the reservoir classification principles, controlling factors, and evolutionary patterns associated with the components of HSR, beginning with examining the microscopic pore structure. The analysis of the microscopic pore structure characteristics reveals the presence of five distinct reservoir types within the HSR. The quality of these reservoirs is governed by various factors, including the composition and support mode of particles, diagenesis, provenance, and sedimentary microfacies. In regions near a provenance with strong hydrodynamic conditions, the HSR predominantly exhibits type I and type II reservoirs, characterized by numerous coarse-grained components and a granular-support mode. As the distance from the provenance increases, transitioning into medium hydrodynamic conditions, the HSR shifts to an interbedded-support mode, primarily developing type III reservoirs. In areas far from the provenance with weak hydrodynamic conditions, HSR reservoir types primarily consist of type IV and type V. Additionally, diagenetic effects such as compaction and calcite cementation further deteriorate intergranular and dissolution pores, consequently diminishing reservoir quality. Notably, during the mixing deposition processes of sand and dolomite, the developmental mode of HSR shifts from type I to type II and type III. Likewise, in the mixing deposition of mud and sand, the HSR transitions from type II to type III and type IV. Similarly, the mixing deposition of dolomite and mud leads to a change in the developmental mode of HSR from type III to type IV and type V. Moreover, this study effectively predicts the occurrence of "sweet spots" using reservoir classification, which reveals their continuous distribution. These findings provide a geological foundation for evaluating "sweet spots" and testing the oil production in HSR reservoirs.
  2. Li X, Zhang F, Shi J, Chan NW, Cai Y, Cheng C, et al.
    Environ Sci Pollut Res Int, 2024 Feb;31(6):9333-9346.
    PMID: 38191729 DOI: 10.1007/s11356-023-31702-2
    As an inland dryland lake basin, the rivers and lakes within the Lake Bosten basin provide scarce but valuable water resources for a fragile environment and play a vital role in the development and sustainability of the local societies. Based on the Google Earth Engine (GEE) platform, combined with the geographic information system (GIS) and remote sensing (RS) technology, we used the index WI2019 to extract and analyze the water body area changes of the Bosten Lake basin from 2000 to 2021 when the threshold value is -0.25 and the slope mask is 8°. The driving factors of water body area changes were also analyzed using the partial least squares-structural equation model (PLS-SEM). The result shows that in the last 20 years, the area of water bodies in the Bosten Lake basin generally fluctuated during the dry, wet, and permanent seasons, with a decreasing trend from 2000 to 2015 and an increasing trend between 2015 and 2019 followed by a steadily decreasing trend afterward. The main driver of the change in wet season water bodies in the Bosten Lake basin is the climatic factors, with anthropogenic factors having a greater influence on the water body area of dry season and permanent season than that of wet season. Our study achieved an accurate and convenient extraction of water body area and drivers, providing up-to-date information to fully understand the spatial and temporal variation of surface water body area and its drivers in the basin, which can be used to effectively manage water resources.
  3. Moniruzzaman M, Yung An C, Rao PV, Hawlader MN, Azlan SA, Sulaiman SA, et al.
    Biomed Res Int, 2014;2014:737490.
    PMID: 25045696 DOI: 10.1155/2014/737490
    The aim of the present study was to characterize the phenolic acids, flavonoids, and antioxidant properties of monofloral honey collected from five different districts in Bangladesh. A new high performance liquid chromatography (HPLC) equipped with a UV detector method was developed for the identification of the phenolic acids and flavonoids. A total of five different phenolic acids were identified, with the most abundant being caffeic acid, benzoic acid, gallic acid, followed by chlorogenic acid and trans-cinnamic acid. The flavonoids, kaempferol, and catechin were most abundant, followed by myricetin and naringenin. The mean moisture content, total sugar content, and color characteristics of the honey samples were 18.36 ± 0.95%, 67.40 ± 5.63 g/100 g, and 129.27 ± 34.66 mm Pfund, respectively. The mean total phenolic acids, total flavonoid content, and proline content were 199.20 ± 135.23, 46.73 ± 34.16, and 556.40 ± 376.86 mg/kg, respectively, while the mean FRAP values and DPPH radical scavenging activity were 327.30 ± 231.87 μM Fe (II)/100 g and 36.95 ± 20.53%, respectively. Among the different types of honey, kalijira exhibited the highest phenolics and antioxidant properties. Overall, our study confirms that all the investigated honey samples are good sources of phenolic acids and flavonoids with good antioxidant properties.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links