Displaying all 3 publications

Abstract:
Sort:
  1. Abdullahi S, Haris H, Zarkasi KZ, Amir HG
    J Basic Microbiol, 2021 Apr;61(4):293-304.
    PMID: 33491813 DOI: 10.1002/jobm.202000695
    Enterobacter tabaci 4M9 (CCB-MBL 5004) was reported to have plant growth-promoting and heavy metal tolerance traits. It was able to tolerate more than 300 mg/L Cd, 600 mg/L As, and 500 mg/L Pb and still maintained the ability to produce plant growth-promoting substances under metal stress conditions. To explore the genetic basis of these beneficial traits, the complete genome sequencing of 4M9 was carried out using Pacific Bioscience (PacBio) sequencing technology. The complete genome consisted of one chromosome of 4,654,430 bp with a GC content of 54.6% and one plasmid of 51,135 bp with a GC content of 49.4%. Genome annotation revealed several genes involved in plant growth-promoting traits, including the production of siderophore, indole acetic acid, and 1-aminocyclopropane-1-carboxylate deaminase; solubilization of phosphate and potassium; and nitrogen metabolism. Similarly, genes involved in heavy metals (As, Co, Zn, Cu, Mn, Se, Cd, and Fe) tolerance were detected. These support its potential as a heavy metal-tolerant plant growth-promoting bacterium and a good genetic resource that can be employed to improve phytoremediation efficiency of heavy metal-contaminated soil via biotechnological techniques. This, to the best of our knowledge, is the first report on the complete genome sequence of heavy metal-tolerant plant growth-promoting E. tabaci.
  2. Rathi DN, Amir HG, Abed RM, Kosugi A, Arai T, Sulaiman O, et al.
    J Appl Microbiol, 2013 Feb;114(2):384-95.
    PMID: 23176757 DOI: 10.1111/jam.12083
    Halophilic micro-organisms have received much interest because of their potential biotechnological applications, among which is the capability of some strains to synthesize polyhydroxyalkanoates (PHA). Halomonas sp. SK5, which was isolated from hypersaline microbial mats, accumulated intracellular granules of poly(3-hydroxybutyrate) [P(3HB)] in modified accumulation medium supplemented with 10% (w/v) salinity and 3% (w/v) glucose.
  3. Uke A, Nakazono-Nagaoka E, Chuah JA, Zain NA, Amir HG, Sudesh K, et al.
    J Environ Manage, 2021 Oct 01;295:113050.
    PMID: 34198177 DOI: 10.1016/j.jenvman.2021.113050
    Oil palm trunks (OPT) are logged for replantation and the fiber residues are disposed of into the palm plantation area. The fiber residues are expected to increase soil fertility through recycling of carbon and minerals via fiber decomposition. This study investigated the effects of OPT fiber disposal and other lignocellulosic biomass on plant growth and microbial diversity in the soil environment. Four treatment plots were tested: (A) soil+OPT fiber (1:20), (B) soil+sugarcane bagasse (1:20), (C) soil+cellulose powder (1:20), and (D) unamended soil as a negative control. Low plant height, decreased chlorophyll content, and low biomass was observed in corn grown on soil mixed with OPT fiber, cellulose, and sugarcane bagasse, when compared with those of the control. The plants grown with OPT fiber were deficient in total nitrogen and magnesium when compared with those without fiber amendment, which suggested that nitrogen and minerals in soil might be taken up by changing microflora because of the OPT fibers presence. To confirm differences in the soil microflora, metagenomics analysis was performed on untreated soil and soil from each lignocellulose treatment. The microflora of soils mixed with OPT fiber, cellulose and sugarcane bagasse revealed substantial increases in bacteria such as families Cytophagaceae and Oscillospiraceae, and two major fungal genera, Trichoderma and Trichocladium, that are involved in lignocellulose degradation. OPT fiber resulted in a drastic increase in the ratios and amounts of Trichocladium in the soil when compared with those of cellulose and sugarcane bagasse. These results indicate that unregulated disposal of OPT fiber into plantation areas could result in nutrient loss from soil by increasing the abundance of microorganisms involved in lignocellulose decomposition.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links