Displaying publications 1 - 20 of 80 in total

Abstract:
Sort:
  1. Latiff AH, Kerr MA
    Ann. Clin. Biochem., 2007 Mar;44(Pt 2):131-9.
    PMID: 17362578 DOI: 10.1258/000456307780117993
    IgA deficiency is the most common primary immunoglobulin deficiency. The prevalence in Caucasians is around one in 500, whereas in some Asian populations it is very uncommon. Most individuals with IgA deficiency are clinically asymptomatic. Those with symptoms of immunodeficiency have predominantly sinopulmonary or gastrointestinal infections, which are more severe when associated with IgG2, IgG4 or specific antibody deficiency. IgA deficiency is believed to be one end of a spectrum of immunodeficiency with common variable immunodeficiency at the most severe end. Although primary IgA deficiency is the most commonly encountered form, secondary deficiencies due to drugs or viral infections are recognized. IgA deficiencies can be partial or transient. Primary IgA deficiency is caused by a defect of terminal lymphocyte differentiation, which leads to underproduction of serum and mucosal IgA; affected individuals have normal IgA genes. A number of non-immunoglobulin genes have been implicated in IgA deficiency. There have been many diseases reported in association with IgA deficiency, particularly autoimmune diseases. The most common association is with coeliac disease (CD), which has special significance since CD is usually diagnosed by detection of specific IgA antibodies that are obviously lacking in IgA deficiency. There is no specific treatment for patients with symptomatic IgA deficiency. Antibiotics are prescribed in those with acute infections. A significant proportion of IgA-deficient individuals are reported to have anti-IgA antibodies in their serum. Although blood or blood products given to IgA-deficient individuals can lead to severe, even fatal, transfusion reactions, such reactions are rare.
  2. Kadhum AA, Shamma MN
    Crit Rev Food Sci Nutr, 2017 Jan 02;57(1):48-58.
    PMID: 26048727
    Lipid is the general name given to fats and oils, which are the basic components of cooking oils, shortening, ghee, margarine, and other edible fats. The chosen term depends on the physical state at ambient temperature; fats are solids and oils are liquids. The chemical properties of the lipids, including degree of saturation, fatty acid chain length, and acylglycerol molecule composition are the basic determinants of physical characteristics such as melting point, cloud point, solid fat content, and thermal behavior. This review will discuss the major lipid modification strategies, hydrogenation, and chemical and enzymatic interesterification, describing the catalysts used mechanisms, kinetics, and impacts on the health-related properties of the final products. Enzymatic interesterification will be emphasized as method that produces a final product with good taste, zero trans fatty acids, and a low number of calories, requires less contact with chemicals, and is cost efficient.
  3. Rahimi I, Chen F, Gandomi AH
    Neural Comput Appl, 2021 Feb 04.
    PMID: 33564213 DOI: 10.1007/s00521-020-05626-8
    The novel coronavirus (COVID-19) has spread to more than 200 countries worldwide, leading to more than 36 million confirmed cases as of October 10, 2020. As such, several machine learning models that can forecast the outbreak globally have been released. This work presents a review and brief analysis of the most important machine learning forecasting models against COVID-19. The work presented in this study possesses two parts. In the first section, a detailed scientometric analysis presents an influential tool for bibliometric analyses, which were performed on COVID-19 data from the Scopus and Web of Science databases. For the above-mentioned analysis, keywords and subject areas are addressed, while the classification of machine learning forecasting models, criteria evaluation, and comparison of solution approaches are discussed in the second section of the work. The conclusion and discussion are provided as the final sections of this study.
  4. Rostenberghe, H.V., Haider, D., Abdullah, Y., Amir, H., Abdul Razak, A.R.
    MyJurnal
    Thyroxine has been shown to have a beneficial effect on renal function in cases of impending renal failure in ani-mal studies.'5 Studies of the use of thyroxine in humans in impending renal failure are scarce. The aim of this study was to assess the effect of oral thyroxine on the renal function of asphyxiated term neonates who often have renal impairment.
    A randomised control trial was conducted, involving 30 term asphyxiated neonates. The study group (n=15) was given thyroxine (50 pg) orally on days 1, 2 and 3 of life and placebo was given to the control group (n=15). Renal function was studied on day 1 and day 4 of life. The two groups did not differ significantly as regards gestational age, birth weight, severity of asphyxia, preg-nancy or delivery complications, fluids administered and drugs used. There was no significant difference in urine output, creatinine clearance and fractional excretion of sodium on day 1 but there was a trend towards a worse renal function on day 1 in the treatment group. The creatinine clearance was significantly better in the treat-ment group on day 4 (p = 0.017). Urine output and fractional excretion of sodium on day 4 were better in the treatment group but the differences did not reach statistical significance (p = 0.14 and 0.057 respectively). Statistical analysis on the differences between day 4 and day 1 showed statistical significance only for creatinine clearance: creatinine clearance day 4 minus creatinine clearance day 1 was 52.6 (±32.4) for the thyroxine group and 7.3 (±7.8) for the controls (p= 0.006).
    These data support the hypothesis that thyroxine may have a significant beneficial effect on the renal function in term neonates with perinatal asphyxia. Thyroxine may be proven useful in future for patients with impending renal failure.
  5. Salman SD, Kadhum AA, Takriff MS, Mohamad AB
    ScientificWorldJournal, 2014;2014:543231.
    PMID: 24605055 DOI: 10.1155/2014/543231
    Numerical investigation has been carried out on heat transfer and friction factor characteristics of copper-water nanofluid flow in a constant heat-fluxed tube with the existence of new configuration of vortex generator using Computational Fluid Dynamics (CFD) simulation. Two types of swirl flow generator: Classical twisted tape (CTT) and Parabolic-cut twisted tape (PCT) with a different twist ratio (y = 2.93, 3.91 and 4.89) and different cut depth (w = 0.5, 1.0 and 1.5 cm) with 2% and 4% volume concentration of CuO nanofluid were used for simulation. The effect of different parameters such as flow Reynolds number, twist ratio, cut depth and nanofluid were considered. The results show that the enhancement of heat transfer rate and the friction factor induced by the Classical (CTT) and Parabolic-cut (PCT) inserts increases with twist ratio and cut depth decreases. The results also revealed that the heat transfer enhancement increases with an increase in the volume fraction of the CuO nanoparticle. Furthermore, the twisted tape with twist ratio (y = 2.93) and cut depth w = 0.5 cm offered 10% enhancement of the average Nusselt number with significant increases in friction factor than those of Classical twisted tape.
  6. Nath RK, Zain MF, Kadhum AA
    ScientificWorldJournal, 2013;2013:686497.
    PMID: 24376384 DOI: 10.1155/2013/686497
    The addition of a photocatalyst to ordinary building materials such as concrete creates environmentally friendly materials by which air pollution or pollution of the surface can be diminished. The use of LiNbO3 photocatalyst in concrete material would be more beneficial since it can produce artificial photosynthesis in concrete. In these research photoassisted solid-gas phases reduction of carbon dioxide (artificial photosynthesis) was performed using a photocatalyst, LiNbO3, coated on concrete surface under illumination of UV-visible or sunlight and showed that LiNbO3 achieved high conversion of CO2 into products despite the low levels of band-gap light available. The high reaction efficiency of LiNbO3 is explained by its strong remnant polarization (70 µC/cm(2)), allowing a longer lifetime of photoinduced carriers as well as an alternative reaction pathway. Due to the ease of usage and good photocatalytic efficiency, the research work done showed its potential application in pollution prevention.
  7. Salman SD, Kadhum AA, Takriff MS, Mohamad AB
    ScientificWorldJournal, 2013;2013:492762.
    PMID: 24078795 DOI: 10.1155/2013/492762
    Numerical investigation of the heat transfer and friction factor characteristics of a circular fitted with V-cut twisted tape (VCT) insert with twist ratio (y = 2.93) and different cut depths (w = 0.5, 1, and 1.5 cm) were studied for laminar flow using CFD package (FLUENT-6.3.26). The data obtained from plain tube were verified with the literature correlation to ensure the validation of simulation results. Classical twisted tape (CTT) with different twist ratios (y = 2.93, 3.91, 4.89) were also studied for comparison. The results show that the enhancement of heat transfer rate induced by the classical and V-cut twisted tape inserts increases with the Reynolds number and decreases with twist ratio. The results also revealed that the V-cut twisted tape with twist ratio y = 2.93 and cut depth w = 0.5 cm offered higher heat transfer rate with significant increases in friction factor than other tapes. In addition the results of V-cut twist tape compared with experimental and simulated data of right-left helical tape inserts (RLT), it is found that the V-cut twist tape offered better thermal contact between the surface and the fluid which ultimately leads to a high heat transfer coefficient. Consequently, 107% of maximum heat transfer was obtained by using this configuration.
  8. Al-Amiery AA, Kadhum AA, Obayes HR, Mohamad AB
    Bioinorg Chem Appl, 2013;2013:354982.
    PMID: 24170994 DOI: 10.1155/2013/354982
    The novel curcumin derivative (1E,4Z,6E)-5-chloro-1,7-bis(4-hydroxy-3-methoxyphenyl)hepta-1,4,6-trien-3-one (5-chlorocurcumin) was prepared from natural curcumin. The newly synthesised compound was characterised by spectral studies (IR, 1H NMR, and 13C NMR). The free radical scavenging activity of 5-chlorocurcumin has been determined by measuring interaction with the stable free radical DPPH, and 5-chlorocurcumin has shown encouraging antioxidant activities. Theory calculations of the synthesised 5-chlorocurcumin were performed using molecular structures with optimised geometries. Molecular orbital calculations provided a detailed description of the orbitals, including spatial characteristics, nodal patterns, and the contributions of individual atoms.
  9. Al-Amiery AA, Kadhum AA, Mohamad AB
    Bioinorg Chem Appl, 2012;2012:795812.
    PMID: 22400016 DOI: 10.1155/2012/795812
    Metal complexes of (Z)-2-(pyrrolidin-2-ylidene)hydrazinecarbothioamide (L) with Cu(II), Co(II), and Ni(II) chlorides were tested against selected types of fungi and were found to have significant antifungal activities. The free-radical-scavenging ability of the metal complexes was determined by their interaction with the stable free radical 2,2''-diphenyl-1-picrylhydrazyl, and all the compounds showed encouraging antioxidant activities. DFT calculations of the Cu complex were performed using molecular structures with optimized geometries. Molecular orbital calculations provide a detailed description of the orbitals, including spatial characteristics, nodal patterns, and the contributions of individual atoms.
  10. Kadhum AA, Al-Amiery AA, Musa AY, Mohamad AB
    Int J Mol Sci, 2011;12(9):5747-61.
    PMID: 22016624 DOI: 10.3390/ijms12095747
    The antioxidant activity of two synthesized coumarins namely, N-(4,7-dioxo-2- phenyl-1,3-oxazepin-3(2H,4H,7H)-yl)-2-(2-oxo-2H-chromen-4-yloxy)acetamide 5 and N-(4-oxo-2-phenylthiazolidin-3-yl)-2-(2-oxo-2H-chromen-4-yloxy)acetamide 6 were studied with the DPPH, hydrogen peroxide and nitric oxide radical methods and compared with the known antioxidant ascorbic acid. Compounds 5 and 6 were synthesized in a good yield from the addition reaction of maleic anhydride or mercaptoacetic acid to compound 4, namely N'-benzylidene-2-(2-oxo-2H-chromen-4-yloxy)acetohydrazide. Compound 4 was synthesized by the condensation of compound 3, namely 2-(2-oxo-2H-chromen-4-yloxy) acetohydrazide, with benzaldehyde. Compound 3, however, was synthesized from the addition of hydrazine to compound 2, namely ethyl 2-(2-oxo-2H-chromen-4-yloxy)acetate, which was synthesized from the reaction of ethyl bromoacetate with 4-hydroxycoumarin 1. Structures for the synthesized coumarins 2-6 are proposed on the basis of spectroscopic evidence.
  11. Al-Amiery AA, Musa AY, Kadhum AA, Mohamad AB
    Molecules, 2011 Aug 10;16(8):6833-43.
    PMID: 21832973 DOI: 10.3390/molecules16086833
    New coumarin derivatives, namely 7-[(5-amino-1,3,4-thiadiazol-2-yl)methoxy]-2H-chromen-2-one, 5-[(2-oxo-2H-chromen-7-yloxy)methyl]-1,3,4-thiadiazol-2(3H)-one, 2-[2-(2-oxo-2H-chromen-7-yloxy)acetyl]-N-phenylhydrazinecarbothioamide, 7-[(5-(phenylamino)-1,3,4-thiadiazol-2-yl)methoxy]-2H-chromen-2-one and 7-[(5-mercapto-4-phenyl-4H-1,2,4-triazol-3-yl)methoxy]-2H-chromen-2-one were prepared starting from the natural compound umbelliferone. The newly synthesized compounds were characterized by elemental analysis and spectral studies (IR, ¹H-NMR and ¹³C-NMR).
  12. Kadhum AA, Mohamad AB, Al-Amiery AA, Takriff MS
    Molecules, 2011 Aug 15;16(8):6969-84.
    PMID: 21844844 DOI: 10.3390/molecules16086969
    3-Aminocoumarin (L) has been synthesized and used as a ligand for the formation of Cr(III), Ni(II), and Cu(II) complexes. The chemical structures were characterized using different spectroscopic methods. The elemental analyses revealed that the complexes where M=Ni(II) and Cu(II) have the general formulae [ML(2)Cl(2)], while the Cr(III) complex has the formula [CrL(2)Cl(2)]Cl. The molar conductance data reveal that all the metal chelates, except the Cr(III) one, are non-electrolytes. From the magnetic and UV-Visible spectra, it is found that these complexes have octahedral structures. The stability for the prepared complexes was studied theoretically using Density Function Theory. The total energy for the complexes was calculated and it was shown that the copper complex is the most stable one. Complexes were tested against selected types of microbial organisms and showed significant activities. The free radical scavenging activity of metal complexes have been determined by measuring their interaction with the stable free radical DPPH and all the compounds have shown encouraging antioxidant activities.
  13. Abushammala MF, Noor Ezlin Ahmad Basri, Basri H, Ahmed Hussein El-Shafie, Kadhum AA
    Waste Manag Res, 2011 Aug;29(8):863-73.
    PMID: 20858637 DOI: 10.1177/0734242X10382064
    The decomposition of municipal solid waste (MSW) in landfills under anaerobic conditions produces landfill gas (LFG) containing approximately 50-60% methane (CH(4)) and 30-40% carbon dioxide (CO(2)) by volume. CH(4) has a global warming potential 21 times greater than CO(2); thus, it poses a serious environmental problem. As landfills are the main method for waste disposal in Malaysia, the major aim of this study was to estimate the total CH(4) emissions from landfills in all Malaysian regions and states for the year 2009 using the IPCC, 1996 first-order decay (FOD) model focusing on clean development mechanism (CDM) project applications to initiate emission reductions. Furthermore, the authors attempted to assess, in quantitative terms, the amount of CH(4) that would be emitted from landfills in the period from 1981-2024 using the IPCC 2006 FOD model. The total CH(4) emission using the IPCC 1996 model was estimated to be 318.8 Gg in 2009. The Northern region had the highest CH(4) emission inventory, with 128.8 Gg, whereas the Borneo region had the lowest, with 24.2 Gg. It was estimated that Pulau Penang state produced the highest CH(4) emission, 77.6 Gg, followed by the remaining states with emission values ranging from 38.5 to 1.5 Gg. Based on the IPCC 1996 FOD model, the total Malaysian CH( 4) emission was forecast to be 397.7 Gg by 2020. The IPCC 2006 FOD model estimated a 201 Gg CH(4) emission in 2009, and estimates ranged from 98 Gg in 1981 to 263 Gg in 2024.
  14. Mousavi Kahaki SM, Nordin MJ, Ashtari AH, J Zahra S
    PLoS One, 2016;11(3):e0149710.
    PMID: 26985996 DOI: 10.1371/journal.pone.0149710
    An invariant feature matching method is proposed as a spatially invariant feature matching approach. Deformation effects, such as affine and homography, change the local information within the image and can result in ambiguous local information pertaining to image points. New method based on dissimilarity values, which measures the dissimilarity of the features through the path based on Eigenvector properties, is proposed. Evidence shows that existing matching techniques using similarity metrics--such as normalized cross-correlation, squared sum of intensity differences and correlation coefficient--are insufficient for achieving adequate results under different image deformations. Thus, new descriptor's similarity metrics based on normalized Eigenvector correlation and signal directional differences, which are robust under local variation of the image information, are proposed to establish an efficient feature matching technique. The method proposed in this study measures the dissimilarity in the signal frequency along the path between two features. Moreover, these dissimilarity values are accumulated in a 2D dissimilarity space, allowing accurate corresponding features to be extracted based on the cumulative space using a voting strategy. This method can be used in image registration applications, as it overcomes the limitations of the existing approaches. The output results demonstrate that the proposed technique outperforms the other methods when evaluated using a standard dataset, in terms of precision-recall and corner correspondence.
  15. Allami T, Alamiery A, Nassir MH, Kadhum AH
    Polymers (Basel), 2021 Jul 27;13(15).
    PMID: 34372071 DOI: 10.3390/polym13152467
    The effect of the soft and hard polyurethane (PU) segments caused by the hydrogen link in phase-separation kinetics was studied to investigate the morphological annealing of PU and thermoplastic polyurethane (TPU). The significance of the segmented PUs is to achieve enough stability for further applications in biomedical and environmental fields. In addition, other research focuses on widening the plastic features and adjusting the PU-polyimide ratio to create elastomer of the poly(urethane-imide). Regarding TPU- and PU-nanocomposite, numerous studies investigated the incorporation of inorganic nanofillers such as carbon or clay to incorporating TPU-nanocomposite in several applications. Additionally, the complete exfoliation was observed up to 5% and 3% of TPU-clay modified with 12 amino lauric acid and benzidine, respectively. PU-nanocomposite of 5 wt.% Cloisite®30B showed an increase in modulus and tensile strength by 110% and 160%, respectively. However, the nanocomposite PU-0.5 wt.% Carbone Nanotubes (CNTs) show an increase in the tensile modulus by 30% to 90% for blown and flat films, respectively. Coating PU influences stress-strain behavior because of the interaction between the soft segment and physical crosslinkers. The thermophysical properties of the TPU matrix have shown two glass transition temperatures (Tg's) corresponding to the soft and the hard segment. Adding a small amount of tethered clay shifts Tg for both segments by 44 °C and 13 °C, respectively, while adding clay from 1 to 5 wt.% results in increasing the thermal stability of TPU composite from 12 to 34 °C, respectively. The differential scanning calorimetry (DSC) was used to investigate the phase structure of PU dispersion, showing an increase in thermal stability, solubility, and flexibility. Regarding the electrical properties, the maximum piezoresistivity (10 S/m) of 7.4 wt.% MWCNT was enhanced by 92.92%. The chemical structure of the PU-CNT composite has shown a degree of agglomeration under disruption of the sp2 carbon structure. However, with extended graphene loading to 5.7 wt.%, piezoresistivity could hit 10-1 S/m, less than 100 times that of PU. In addition to electrical properties, the acoustic behavior of MWCNT (0.35 wt.%)/SiO2 (0.2 wt.%)/PU has shown sound absorption of 80 dB compared to the PU foam sample. Other nanofillers, such as SiO2, TiO2, ZnO, Al2O3, were studied showing an improvement in the thermal stability of the polymer and enhancing scratch and abrasion resistance.
  16. Mehbodniya AH, Moghavvemi M, Narayanan V, Waran V
    World Neurosurg, 2019 Feb;122:e449-e454.
    PMID: 30347306 DOI: 10.1016/j.wneu.2018.10.069
    BACKGROUND: Navigation (image guidance) is an essential tool in modern neurosurgery, and most surgeons use an optical tracking system. Although the technology is accurate and reliable, one often is confronted by line of sight issues that interrupt the flow of an operation. There has been feedback on the matter, but the actual problem has not been accurately quantified, therefore making this the primary aim of this study. It is particularly important given that robotic technology is gradually making its way into neurosurgery and most of these devices depend on optical navigation when procedures are being conducted.

    METHODS: In this study, the frequency and causes of line of sight issues is assessed using recordings of Navigation probe locations and its synchronised video recordings.

    RESULTS: The mentioned experiment conducted for a series of 15 neurosurgical operations. This issue occured in all these surgeries except one. Maximum duration of issue presisting reached up to 56% of the navigation usage time.

    CONCLUSIONS: The arrangment of staff and equipment is a key factor in avoiding this issue.

  17. Alamiery A, Mohamad AB, Kadhum AAH, Takriff MS
    Data Brief, 2022 Feb;40:107838.
    PMID: 35106341 DOI: 10.1016/j.dib.2022.107838
    This data article includes data described in the investigation report entitled "The synergistic role of azomethine group and triazole ring at improving the anti-corrosive performance of 2-amino-4-phenylthiazole" (Alamiery et al., 2021). In this data article, a comprehensive effect of 2-Amino-4-phenyl-N-benzylidene-5-(1,2,4-triazol-1-yl)thiazole (APNT) and 2-amino-4-phenylthiazole (APT) and optimized process parameter of the inhibitor in 1 M HCl solution was presented using gravimetric techniques and Density functional theory. The presence of the inhibitors influenced the corrosion resistance of mild steel (MS). Inhibition efficiencies values of 98.1% and 94.74% were recorded as results of inhibition of the MS by the inhibiting compounds APNT and ATP respectively. DFT studies observed that the presence of benzylidene to the APNT and the substitution of a triazole in the thiazole ring are adsorption sites that increase the interaction of the APNT molecules with the iron atoms on the MS surface.
  18. Al-Amiery AA, Kadhum AAH, Mohamad AB, Junaedi S
    Materials (Basel), 2013 Apr 02;6(4):1420-1431.
    PMID: 28809218 DOI: 10.3390/ma6041420
    2-(1-methyl-4-((E)-(2-methylbenzylidene)amino)-2-phenyl-1H-pyrazol-3(2H)-ylidene)-hydrazineecarbothioamide (HCB) was synthesized as a corrosion inhibitor from the reaction of 4-aminoantipyrine, thiosemicarbazide and 2-methylbenzaldehyde. The corrosion inhibitory effects of HCB on mild steel in 1.0 M HCl were investigated using potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS). The results showed that HCB inhibited mild steel corrosion in acidic solution and inhibition efficiency increased with an increase in the concentration of the inhibitor. The inhibition efficiency was up to 96.5% at 5.0 mM. Changes in the impedance parameters suggested that HCB adsorbed on the surface of mild steel, leading to the formation of a protective film. The novel corrosion inhibitor synthesized in the present study was characterized using Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR) spectral data.
  19. Al-Majedy YK, Al-Amiery AA, Kadhum AA, Mohamad AB
    PLoS One, 2016;11(5):e0156625.
    PMID: 27243231 DOI: 10.1371/journal.pone.0156625
    The synthesis of derivatives of 4-Methylumbelliferone (4-MUs), which are structurally interesting antioxidants, was performed in this study. The modification of 4-Methylumbelliferone (4-MU) by different reaction steps was performed to yield the target compounds, the 4-MUs. The 4-MUs were characterized by different spectroscopic techniques (Fourier transform infrared; FT-IR and Nuclear magnetic resonance; NMR) and micro-elemental analysis (CHNS). The in vitro antioxidant activity of the 4-MUs was evaluated in terms of their free radical scavenging activities against 2,2-diphenyl-1-picrylhydrazyl (DPPH), Nitric oxide radical scavenging activity assay, chelating activity and their (FRAP) ferric-reducing antioxidant power, which were compared with a standard antioxidant. Our results reveal that the 4-MUs exhibit excellent radical scavenging activities. The antioxidant mechanisms of the 4-MUs were also studied. Density Function Theory (DFT)-based quantum chemical studies were performed with the basis set at 3-21G. Molecular models of the synthesized compounds were studied to understand the antioxidant activity. The electron levels, namely HOMO (highest occupied molecular orbital) and LUMO (lowest unoccupied molecular orbital), for these synthesized antioxidants were also studied.
  20. Gaaz TS, Sulong AB, Akhtar MN, Kadhum AA, Mohamad AB, Al-Amiery AA
    Molecules, 2015;20(12):22833-47.
    PMID: 26703542 DOI: 10.3390/molecules201219884
    The aim of this review was to analyze/investigate the synthesis, properties, and applications of polyvinyl alcohol-halloysite nanotubes (PVA-HNT), and their nanocomposites. Different polymers with versatile properties are attractive because of their introduction and potential uses in many fields. Synthetic polymers, such as PVA, natural polymers like alginate, starch, chitosan, or any material with these components have prominent status as important and degradable materials with biocompatibility properties. These materials have been developed in the 1980s and are remarkable because of their recyclability and consideration of the natural continuation of their physical and chemical properties. The fabrication of PVA-HNT nanocomposites can be a potential way to address some of PVA's limitations. Such nanocomposites have excellent mechanical properties and thermal stability. PVA-HNT nanocomposites have been reported earlier, but without proper HNT individualization and PVA modifications. The properties of PVA-HNT for medicinal and biomedical use are attracting an increasing amount of attention for medical applications, such as wound dressings, drug delivery, targeted-tissue transportation systems, and soft biomaterial implants. The demand for alternative polymeric medical devices has also increased substantially around the world. This paper reviews individualized HNT addition along with crosslinking of PVA for various biomedical applications that have been previously reported in literature, thereby showing the attainability, modification of characteristics, and goals underlying the blending process with PVA.
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links