Displaying all 15 publications

Abstract:
Sort:
  1. Abdulla YA, Amin YM, Khoo HB
    J Radiol Prot, 2002 Dec;22(4):417-21.
    PMID: 12546228
    Percentage depth doses for 6 and 10 MV x-ray beams from a linear accelerator were measured using approximately 1 cm long (approximately 0.3 mg) Ge-doped optical fibre as a thermoluminescence dosimeter for two field sizes, 5 x 5 and 10 x 10 cm2. The results indicate that the Ge-doped optical fibre dosimeter is in good agreement with the results from a PTW 30001 cylindrical ionisation chamber and TLD-100. For 6 MV x-ray beams we observe that the depth of maximum dose d(max) is 1.5 and 2 cm for field sizes of 5 x 5 and 10 x 10 cm2 respectively. For 10 MV d(max) is 2 cm for a field size of 5 x 5 cm2 and 2.5 cm for a 10 x 10 cm2 field.
  2. Khandaker MU, Jojo PJ, Kassim HA, Amin YM
    Radiat Prot Dosimetry, 2012 Nov;152(1-3):33-7.
    PMID: 22887119 DOI: 10.1093/rpd/ncs145
    Concentrations of primordial radionuclides in common construction materials collected from the south-west coastal region of India were determined using a high-purity germanium gamma-ray spectrometer. Average specific activities (Bq kg(-1)) for (238)U((226)Ra) in cement, brick, soil and stone samples were obtained as 54 ± 13, 21 ± 4, 50 ± 12 and 46 ± 8, respectively. Respective values of (232)Th were obtained as 65 ± 10, 21 ± 3, 58 ± 10 and 57 ± 12. Concentrations of (40)K radionuclide in cement, brick, soil and stone samples were found to be 440 ± 91, 290 ± 20, 380 ± 61 and 432 ± 64, respectively. To evaluate the radiological hazards, radium equivalent activity, various hazard indices, absorbed dose rate and annual effective dose have been calculated, and compared with the literature values. Obtained data could be used as reference information to assess any radiological contamination due to construction materials in future.
  3. Al-Ta'ii HM, Mohd Amin Y, Periasamy V
    Sensors (Basel), 2015 Feb 26;15(3):4810-22.
    PMID: 25730484 DOI: 10.3390/s150304810
    Many types of materials such as inorganic semiconductors have been employed as detectors for nuclear radiation, the importance of which has increased significantly due to recent nuclear catastrophes. Despite the many advantages of this type of materials, the ability to measure direct cellular or biological responses to radiation might improve detector sensitivity. In this context, semiconducting organic materials such as deoxyribonucleic acid or DNA have been studied in recent years. This was established by studying the varying electronic properties of DNA-metal or semiconductor junctions when exposed to radiation. In this work, we investigated the electronics of aluminium (Al)/DNA/silicon (Si) rectifying junctions using their current-voltage (I-V) characteristics when exposed to alpha radiation. Diode parameters such as ideality factor, barrier height and series resistance were determined for different irradiation times. The observed results show significant changes with exposure time or total dosage received. An increased deviation from ideal diode conditions (7.2 to 18.0) was observed when they were bombarded with alpha particles for up to 40 min. Using the conventional technique, barrier height values were observed to generally increase after 2, 6, 10, 20 and 30 min of radiation. The same trend was seen in the values of the series resistance (0.5889-1.423 Ω for 2-8 min). These changes in the electronic properties of the DNA/Si junctions could therefore be utilized in the construction of sensitive alpha particle detectors.
  4. Asaduzzaman Kh, Khandaker MU, Amin YM, Bradley DA, Mahat RH, Nor RM
    J Environ Radioact, 2014 Sep;135:120-7.
    PMID: 24814722 DOI: 10.1016/j.jenvrad.2014.04.009
    Soil-to-plant transfer factors (TFs) are of fundamental importance in assessing the environmental impact due to the presence of radioactivity in soil and agricultural crops. Tapioca and sweet potato, both root crops, are popular foodstuffs for a significant fraction of the Malaysian population, and result in intake of radionuclides. For the natural field conditions experienced in production of these foodstuffs, TFs and the annual effective dose were evaluated for the natural radionuclides (226)Ra, (232)Th, (40)K, and for the anthropogenic radionuclide (88)Y, the latter being a component of fallout. An experimental tapioca field was developed for study of the time dependence of plant uptake. For soil samples from all study locations other than the experimental field, it has been shown that these contain the artificial radionuclide (88)Y, although the uptake of (88)Y has only been observed in the roots of the plant Manihot esculenta (from which tapioca is derived) grown in mining soil. The estimated TFs for (226)Ra and (232)Th for tapioca and sweet potato are very much higher than that reported by the IAEA. For all study areas, the annual effective dose from ingestion of tapioca and sweet potato are estimated to be lower than the world average (290 μSv y(-1)).
  5. Al-Hinai KH, Benkara Mohd N, Rozullyah Zulkepely N, Md Nor R, Mohd Amin Y, Bradley DA
    Appl Radiat Isot, 2013 Dec;82:126-9.
    PMID: 23978507 DOI: 10.1016/j.apradiso.2013.07.013
    We describe two example pilot efforts to help define new thermoluminescent dosimeter media. The first concerns ZnS:Mn nanophosphors, prepared by chemical precipitation using zinc and sodium sulfate, doped with manganese sulfate at concentrations varying from 1 to 3mol. The second concerns chemical vapor deposited diamond, produced as a thin film or as amorphous carbon on a single-crystal silicon substrate, each deposited under the same conditions, use being made of the hot filament-chemical vapor deposition (HFCVD) technique. The gas concentrations used were 1% CH4 in 99% H2 and 25% CH4 in 75% H2. Characterization of formations used FESEM, XRD and EDX. The nanophosphors consisted of particles of sizes in the range 85-150nm, the thermoluminescence (TL)-based radiation detection medium giving rise to a single peaked glow curve of maximum yield at a temperature of 250°C at a heating rate of 5°C/s. The TL response increased linearly with radiation dose, ZnS doped to 2mol of Mn being found the most sensitive. Regarding chemical vapor deposited (CVD) carbon, inappreciable TL was found for the resultant ball-like amorphous carbon films, graphite, and the silicon substrate, whereas CVD diamond films showed a promising degree of linearity with dose. For both the ZnS and diamond samples, TL signal fading was appreciable, being some 40% per day for ZnS and>50% per day for CVD films even under storage in the dark at room temperature, making it apparent that there is need to adjust parameters such as the size of nanoparticles.
  6. Amin YM, Khandaker MU, Shyen AK, Mahat RH, Nor RM, Bradley DA
    Appl Radiat Isot, 2013 Oct;80:109-16.
    PMID: 23891979 DOI: 10.1016/j.apradiso.2013.06.014
    Current study concerns measurement of radioactivity levels in areas surrounding a 2420 MW thermal power plant fueled predominantly by bituminous coal. The concentrations of (226)Ra, (232)Th and (40)K in onsite bottom-ash were found to be 139 Bq/kg, 108 Bq/kg and 291 Bq/kg, respectively, the levels for these radiolnuclides in soil decreasing with distance from the power plant. At the plant perimeter the respective radionuclide concentrations were 87 Bq/kg, 74 Bq/kg and 297 Bq/kg. In a nearby town, the corresponding concentrations were 104 Bq/kg, 52 Bq/kg and 358 Bq/kg, suggestive of use of TENORM affected soils. The mean radium equivalent activities (Raeq) in soil and ash sample in the town were 205 Bq/kg and 316 Bq/kg, respectively. The Kapar plant ash/slag appears to contain a higher level of TENORM than the world average. The degree of contamination is much higher inside the town where slag has been mixed with topsoil as landfill or as simple domestic waste. For the prevailing levels of exposure and a worst case senario, the predicted committed effective dose due to ingestion and inhalation for intake durations of 1- and 30 years would be 4.2 μSv and 220 μSv, respectively.
  7. Amin YM, Mahat RH, Nor RM, Khandaker MU, Takleef GH, Bradley DA
    Radiat Prot Dosimetry, 2013 Oct;156(4):475-80.
    PMID: 23584496 DOI: 10.1093/rpd/nct097
    The presence of natural radioactivity and (137)Cs has been investigated in fresh media obtained from South China Sea locations off the coast of peninsular Malaysia. The media include seafood, sea water and sediment. The samples were collected some weeks prior to the devastating 2011 Tōhoku earthquake and associated tsunami, the occurrence of which precipitated the Fukushima incident. All samples showed the presence of naturally occurring (226)Ra, (228)Ra and primordial (40)K, all at typically prevailing levels. The concentrations of natural radioactivity in molluscs were found to be greater than that of other marine life studied herein, the total activity ranging from 337 to 393 Bq kg(-1) dry weight. The total activity in sea water ranged from 15 to 88 Bq l(-1). Sediment samples obtained at deep sea locations more than 20 km offshore further revealed the presence of (137)Cs. The activity of (137)Cs varied from ND to 0.5 Bq kg(-1) dry weight, the activity increasing with offshore distance and depth. The activity concentrations presented herein should be considered useful in assessing the impact of any future radiological contamination to the marine environment.
  8. Asaduzzaman Kh, Khandaker MU, Amin YM, Zainuddin Z, Farook MS, Bradley DA
    Radiat Prot Dosimetry, 2015 Nov;167(1-3):165-70.
    PMID: 25935008 DOI: 10.1093/rpd/ncv237
    Vegetable is an essential daily diet item for the people of Malaysia. This work addressed the radiation and heavy metal exposure scenarios through the consumption of vegetables. Kuala Selangor is located in Sungai Selangor estuary in the west coast of Peninsular Malaysia, which is susceptible to pollution load due to the presence of large-scale industrial and human activities. Radioactivity and heavy metals level in human diet is of particular concern for the assessment of possible radiological and chemical hazards to human health. Therefore, a comprehensive study was carried out to determine the radioactivity levels ((226)Ra, (228)Ra and (40)K) and heavy metal concentrations (Cr, As, Cd, Mn, Mg, Al, Sr, Rb, Sb, Ba, Hg, Fe, Ni, Zn, Cu, Bi and Pb) in 10 varieties of vegetable collected from different farmlands in Kuala Selangor region. The committed doses for (226)Ra, (228)Ra and (40)K due to consumption of vegetables were found 16.6±1.3, 23.6±1.7 and 58±5 µSv y(-1), respectively, with a total of 98±8 µSv y(-1). This dose imposes no significant threat to human health. The estimated cancer risk shows that probability of increase in cancer risk from daily intake of vegetables is only a minor fraction of International Commission on Radiological Protection values. The concentrations of heavy metal were below the daily intake recommended by the international organisations.
  9. Siti Rozaila Z, Khandaker MU, Abdul Sani SF, Sabtu SN, Amin YM, Maah MJ, et al.
    J Radiol Prot, 2018 12;38(4):1535-1543.
    PMID: 30089707 DOI: 10.1088/1361-6498/aad917
  10. Entezam A, Khandaker MU, Amin YM, Ung NM, Bradley DA, Maah J, et al.
    PLoS One, 2016;11(5):e0153913.
    PMID: 27149115 DOI: 10.1371/journal.pone.0153913
    Study has been made of the thermoluminescence (TL) response of silica-based Ge-doped cylindrical, flat and photonic crystal fibres (referred to herein as PCF-collapsed) to electron (6, 12 and 20 MeV) and photon (6, 10 MV) irradiation and 1.25 MeV γ-rays, for doses from 0.1 Gy to 100 Gy. The electron and photon irradiations were delivered through use of a Varian Model 2100C linear accelerator located at the University of Malaya Medical Centre and γ-rays delivered from a 60Co irradiator located at the Secondary Standard Dosimetry Laboratory (SSDL), Malaysian Nuclear Agency. Tailor-made to be of various dimensions and dopant concentrations (6-10% Ge), the fibres were observed to provide TL yield linear with radiation dose, reproducibility being within 1-5%, with insensitivity to energy and angular variation. The sensitivity dependency of both detectors with respect to field size follows the dependency of the output factors. For flat fibres exposed to 6 MV X-rays, the 6% Ge-doped fibre provided the greatest TL yield while PCF-collapsed showed a response 2.4 times greater than that of the 6% Ge-doped flat fibres. The response of cylindrical fibres increased with core size. The fibres offer uniform response, high spatial resolution and sensitivity, providing the basis of promising TL systems for radiotherapy applications.
  11. Begum M, Rahman AK, Abdul-Rashid HA, Yusoff Z, Begum M, Mat-Sharif KA, et al.
    Appl Radiat Isot, 2015 Jun;100:79-83.
    PMID: 25468288 DOI: 10.1016/j.apradiso.2014.10.025
    Important thermoluminescence (TL) properties of five (5) different core sizes Ge-doped optical fibers have been studied to develop new TL material with better response. These are drawn from same preform applying different speed and tension during drawing phase to produce Ge-doped optical fibers with five (5) different core sizes. The results of the investigations are also compared with most commonly used standard TLD-100 chips (LiF:Mg,Ti) and commercial multimode Ge-doped optical fiber (Yangtze Optical Fiber, China). Scanning Electron Microscope (SEM) and EDX analysis of the fibers are also performed to map Ge distribution across the deposited region. Standard Gamma radiation source in Secondary Standard Dosimetry Lab (SSDL) was used for irradiation covering dose range from 1Gy to 10Gy. The essential dosimetric parameters that have been studied are TL linearity, reproducibility and fading. Prior to irradiation all samples ∼0.5cm length are annealed at temperature of 400°C for 1h period to standardize their sensitivities and background. Standard TLD-100 chips are also annealed for 1h at 400°C and subsequently 2h at 100°C to yield the highest sensitivity. TL responses of these fibers show linearity over a wide gamma radiation dose that is an important property for radiation dosimetry. Among all fibers used in this study, 100μm core diameter fiber provides highest response that is 2.6 times than that of smallest core (20μm core) optical fiber. These fiber-samples demonstrate better response than commercial multi-mode optical fiber and also provide low degree of fading about 20% over a period of fifteen days for gamma radiation. Effective atomic number (Zeff) is found in the range (13.25-13.69) which is higher than soft tissue (7.5) however within the range of human-bone (11.6-13.8). All the fibers can also be re-used several times as a detector after annealing. TL properties of the Ge-doped optical fibers indicate promising applications in ionizing radiation dosimetry.
  12. Khandaker MU, Asaduzzaman Kh, Nawi SM, Usman AR, Amin YM, Daar E, et al.
    PLoS One, 2015;10(6):e0128790.
    PMID: 26075909 DOI: 10.1371/journal.pone.0128790
    The environment of the Straits of Malacca receives pollution as a result of various industrial and anthropogenic sources, making systematic studies crucial in determining the prevailing water quality. Present study concerns concentrations of natural radionuclides and heavy metals in marine fish (Rastrelliger kanagurta) collected from the Straits of Malacca, since aquatic stock form an important source of the daily diet of the surrounding populace. Assessment was made of the concentrations of key indicator radionuclides (226Ra, 232Th, 40K) and heavy metals (As, Mn, Fe, Cr, Ni, Zn, Cu, Co, Sr, Al, Hg and Pb) together with various radiation indices linked to the consumption of seafish. The annual effective dose for all detected radionuclides for all study locations has been found to be within UNSCEAR acceptable limits as has the associated life-time cancer risk. The overall contamination of the sampled fish from heavy metals was also found to be within limits of tolerance.
  13. Khandaker MU, Olatunji MA, Shuib KS, Hakimi NA, Nasir NL, Asaduzzaman Kh, et al.
    Radiat Prot Dosimetry, 2015 Nov;167(1-3):196-200.
    PMID: 25956784 DOI: 10.1093/rpd/ncv243
    Malaysia is among the countries with the highest fish consumption in the world and relies on seafood as a main source of animal protein. Thus, the radioactivity in the mostly consumed marine animals such as fishes, crustaceans and molluscs collected from the coastal waters around Peninsular Malaysia has been determined to monitor the level of human exposure by natural radiation via seafood consumption. The mean activity concentrations of naturally occurring radionuclides (226)Ra ((238)U), (228)Ra ((232)Th) and (40)K ranged from 0.67 ± 0.19 Bq kg(-1) (Perna viridis) to 1.20 ± 0.70 Bq kg(-1) (Rastrelliger), from 0.19 ± 0.17 Bq kg(-1) (Teuthida) to 0.82 ± 0.67 Bq kg(-1) (Caridea) and from 34 ± 13 Bq kg(-1) (Caridea) to 48 ± 24 Bq kg(-1) (Teuthida), respectively. The mean annual committed effective dose due to the individual radionuclides shows an order of (228)Ra > (226)Ra > (40)K in all marine samples. The obtained doses are less than the global internal dose of 290 µSv y(-1) set by the United Nations Scientific Committee on the Effects of Atomic Radiation, discarding any significant radiological risks to the populace of Peninsular Malaysia.
  14. Rozaila ZS, Khandaker MU, Abdul Sani SF, Sabtu SN, Amin YM, Maah MJ, et al.
    J Radiol Prot, 2017 Sep 25;37(3):761-779.
    PMID: 28581438 DOI: 10.1088/1361-6498/aa770e
    The sensitivity of a novel silica-based fibre-form thermoluminescence dosimeter was tested off-site of a rare-earths processing plant, investigating the potential for obtaining baseline measurements of naturally occurring radioactive materials. The dosimeter, a Ge-doped collapsed photonic crystal fibre (PCFc) co-doped with B, was calibrated against commercially available thermoluminescent dosimetry (TLD) (TLD-200 and TLD-100) using a bremsstrahlung (tube-based) x-ray source. Eight sampling sites within 1 to 20 km of the perimeter of the rare-earth facility were identified, the TLDs (silica- as well as TLD-200 and TLD-100) in each case being buried within the soil at fixed depth, allowing measurements to be obtained, in this case for protracted periods of exposure of between two to eight months. The values of the dose were then compared against values projected on the basis of radioactivity measurements of the associated soils, obtained via high-purity germanium gamma-ray spectrometry. Accord was found in relative terms between the TL evaluations at each site and the associated spectroscopic results. Thus said, in absolute terms, the TL evaluated doses were typically less than those derived from gamma-ray spectroscopy, by ∼50% in the case of PCFc-Ge. Gamma spectrometry analysis typically provided an upper limit to the projected dose, and the Marinelli beaker contents were formed from sieving to provide a homogenous well-packed medium. However, with the radioactivity per unit mass typically greater for smaller particles, with preferential adsorption on the surface and the surface area per unit volume increasing with decrease in radius, this made for an elevated dose estimate. Prevailing concentrations of key naturally occurring radionuclides in soil,226Ra,232Th and40K, were also determined, together with radiological dose evaluation. To date, the area under investigation, although including a rare-earth processing facility, gives no cause for concern from radiological impact. The current study reveals the suitability of the optical fibre based micro-dosimeter for all-weather monitoring of low-level environmental radioactivity.
  15. Karimah A, Ridho MR, Munawar SS, Ismadi, Amin Y, Damayanti R, et al.
    Polymers (Basel), 2021 Dec 07;13(24).
    PMID: 34960839 DOI: 10.3390/polym13244280
    Asian countries have abundant resources of natural fibers, but unfortunately, they have not been optimally utilized. The facts showed that from 2014 to 2020, there was a shortfall in meeting national demand of over USD 2.75 million per year. Therefore, in order to develop the utilization and improve the economic potential as well as the sustainability of natural fibers, a comprehensive review is required. The study aimed to demonstrate the availability, technological processing, and socio-economical aspects of natural fibers. Although many studies have been conducted on this material, it is necessary to revisit their potential from those perspectives to maximize their use. The renewability and biodegradability of natural fiber are part of the fascinating properties that lead to their prospective use in automotive, aerospace industries, structural and building constructions, bio packaging, textiles, biomedical applications, and military vehicles. To increase the range of applications, relevant technologies in conjunction with social approaches are very important. Hence, in the future, the utilization can be expanded in many fields by considering the basic characteristics and appropriate technologies of the natural fibers. Selecting the most prospective natural fiber for creating national products can be assisted by providing an integrated management system from a digitalized information on potential and related technological approaches. To make it happens, collaborations between stakeholders from the national R&D agency, the government as policy maker, and academic institutions to develop national bioproducts based on domestic innovation in order to move the circular economy forward are essential.
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links