Displaying all 4 publications

Abstract:
Sort:
  1. Alyan E, Saad NM, Kamel N
    Hum Factors, 2021 Nov;63(7):1230-1255.
    PMID: 32286888 DOI: 10.1177/0018720820913173
    OBJECTIVE: The purpose of this study is to examine the effect of the workstation type on the severity of mental stress by means of measuring prefrontal cortex (PFC) activation using functional near-infrared spectroscopy.

    BACKGROUND: Workstation type is known to influence worker's health and performance. Despite the practical implications of ergonomic workstations, limited information is available regarding their impact on brain activity and executive functions.

    METHOD: Ten healthy participants performed a Montreal imaging stress task (MIST) in ergonomic and nonergonomic workstations to investigate their effects on the severity of the induced mental stress.

    RESULTS: Cortical hemodynamic changes in the PFC were observed during the MIST in both the ergonomic and nonergonomic workstations. However, the ergonomic workstation exhibited improved MIST performance, which was positively correlated with the cortical activation on the right ventrolateral and the left dorsolateral PFC, as well as a marked decrease in salivary alpha-amylase activity compared with that of the nonergonomic workstation. Further analysis using the NASA Task Load Index revealed a higher weighted workload score in the nonergonomic workstation than that in the ergonomic workstation.

    CONCLUSION: The findings suggest that ergonomic workstations could significantly improve cognitive functioning and human capabilities at work compared to a nonergonomic workstation.

    APPLICATION: Such a study could provide critical information on workstation design and development of mental stress that can be overlooked during traditional workstation design and mental stress assessments.

  2. Alyan E, Saad NM, Kamel N, Rahman MA
    Appl Ergon, 2021 Oct;96:103497.
    PMID: 34139374 DOI: 10.1016/j.apergo.2021.103497
    This study aims to evaluate the effect of workstation type on the neural and vascular networks of the prefrontal cortex (PFC) underlying the cognitive activity involved during mental stress. Workstation design has been reported to affect the physical and mental health of employees. However, while the functional effects of ergonomic workstations have been documented, there is little research on the influence of workstation design on the executive function of the brain. In this study, 23 healthy volunteers in ergonomic and non-ergonomic workstations completed the Montreal imaging stress task, while their brain activity was recorded using the synchronized measurement of electroencephalography and functional near-infrared spectroscopy. The results revealed desynchronization in alpha rhythms and oxygenated hemoglobin, as well as decreased functional connectivity in the PFC networks at the non-ergonomic workstations. Additionally, a significant increase in salivary alpha-amylase activity was observed in all participants at the non-ergonomic workstations, confirming the presence of induced stress. These findings suggest that workstation design can significantly impact cognitive functioning and human capabilities at work. Therefore, the use of functional neuroimaging in workplace design can provide critical information on the causes of workplace-related stress.
  3. Alyan E, Saad NM, Kamel N, Yusoff MZ, Zakariya MA, Rahman MA, et al.
    Sensors (Basel), 2021 Mar 11;21(6).
    PMID: 33799722 DOI: 10.3390/s21061968
    This study aims to investigate the effects of workplace noise on neural activity and alpha asymmetries of the prefrontal cortex (PFC) during mental stress conditions. Workplace noise exposure is a pervasive environmental pollutant and is negatively linked to cognitive effects and selective attention. Generally, the stress theory is assumed to underlie the impact of noise on health. Evidence for the impacts of workplace noise on mental stress is lacking. Fifteen healthy volunteer subjects performed the Montreal imaging stress task in quiet and noisy workplaces while their brain activity was recorded using electroencephalography. The salivary alpha-amylase (sAA) was measured before and immediately after each tested workplace to evaluate the stress level. The results showed a decrease in alpha rhythms, or an increase in cortical activity, of the PFC for all participants at the noisy workplace. Further analysis of alpha asymmetry revealed a greater significant relative right frontal activation of the noisy workplace group at electrode pairs F4-F3 but not F8-F7. Furthermore, a significant increase in sAA activity was observed in all participants at the noisy workplace, demonstrating the presence of stress. The findings provide critical information on the effects of workplace noise-related stress that might be neglected during mental stress evaluations.
  4. Alyan E, Combe T, Awang Rambli DR, Sulaiman S, Merienne F, Muhaiyuddin NDM
    Int J Environ Res Public Health, 2021 Oct 29;18(21).
    PMID: 34769937 DOI: 10.3390/ijerph182111420
    The authors of this paper sought to investigate the impact of virtual forest therapy based on realistic versus dreamlike environments on reducing stress levels. Today, people are facing an increase in stress levels in everyday life, which may be due to personal life, work environment, or urban area expansion. Previous studies have reported that urban environments demand more attention and mental workload than natural environments. However, evidence for the effects of natural environments as virtual forest therapy on stress levels has not yet been fully explored. In this study, a total of 20 healthy participants completed a letter-detection test to increase their stress level and were then randomly assigned to two different virtual environments representing realistic and dreamlike graphics. The participants' stress levels were assessed using two physiological methods that measured heart rate and skin conductance levels and one psychological method through the Profile of Mood States (POMS) questionnaire. These indicators were analyzed using a sample t-test and a one-way analysis of variance. The results showed that virtual forest environments could have positive stress-relieving effects. However, realistic graphics were more efficient in reducing stress. These findings contribute to growing forest therapy concepts and provide new directions for future forest therapy research.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links