Displaying all 19 publications

Abstract:
Sort:
  1. Almahdi EM, Zaidan AA, Zaidan BB, Alsalem MA, Albahri OS, Albahri AS
    J Med Syst, 2019 May 29;43(7):207.
    PMID: 31144129 DOI: 10.1007/s10916-019-1336-z
    This paper presents comprehensive insights into mobile patient monitoring systems (MPMSs) from evaluation and benchmarking aspects on the basis of two critical directions. The current evaluation criteria of MPMSs based on the architectural components of MPMSs and possible solutions are discussed. This review highlights four serious issues, namely, multiple evaluation criteria, criterion importance, unmeasurable criteria and data variation, in MPMS benchmarking. Multicriteria decision-making (MCDM) analysis techniques are proposed as effective solutions to solve these issues from a methodological aspect. This methodological aspect involves a framework for benchmarking MPMSs on the basis of MCDM to rank available MPMSs and select a suitable one. The benchmarking framework is discussed in four steps. Firstly, pre-processing and identification procedures are presented. Secondly, the procedure of weight calculation based on the best-worst method (BWM) is described. Thirdly, the development of a benchmark framework by using the VIKOR method is introduced. Lastly, the proposed framework is validated.
  2. Almahdi EM, Zaidan AA, Zaidan BB, Alsalem MA, Albahri OS, Albahri AS
    J Med Syst, 2019 Jun 06;43(7):219.
    PMID: 31172296 DOI: 10.1007/s10916-019-1339-9
    This study presents a prioritisation framework for mobile patient monitoring systems (MPMSs) based on multicriteria analysis in architectural components. This framework selects the most appropriate system amongst available MPMSs for the telemedicine environment. Prioritisation of MPMSs is a challenging task due to (a) multiple evaluation criteria, (b) importance of criteria, (c) data variation and (d) unmeasurable values. The secondary data presented as the decision evaluation matrix include six systems (namely, Yale-National Aeronautics and Space Administration (NASA), advanced health and disaster aid network, personalised health monitoring, CMS, MobiHealth and NTU) as alternatives and 13 criteria (namely, supported number of sensors, sensor front-end (SFE) communication, SFE to mobile base unit (MBU) communications, display of biosignals on the MBU, storage of biosignals on the MBU, intra-body area network (BAN) communication problems, extra-BAN communication problems, extra-BAN communication technology, extra-BAN communication protocols, back-end system communication technology, intended geographic area of use, end-to-end security and reported trial problems) based on the architectural components of MPMSs. These criteria are adopted from the most relevant studies and are found to be applicable to this study. The prioritisation framework is developed in three stages. (1) The unmeasurable values of the MPMS evaluation criteria in the adopted decision evaluation matrix based on expert opinion are represented by using the best-worst method (BWM). (2) The importance of the evaluation criteria based on the architectural components of the MPMS is determined by using the BWM. (3) The VlseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR) method is utilised to rank the MPMSs according to the determined importance of the evaluation criteria and the adopted decision matrix. For validation, mean ± standard deviation is used to verify the similarity of systematic prioritisations objectively. The following results are obtained. (1) The BWM represents the unmeasurable values of the MPMS evaluation criteria. (2) The BWM is suitable for weighing the evaluation criteria based on the architectural components of the MPMS. (3) VIKOR is suitable for solving the MPMS prioritisation problem. Moreover, the internal and external VIKOR group decision making are approximately the same, with the best MPMS being 'Yale-NASA' and the worst MPMS being 'NTU'. (4) For the objective validation, remarkable differences are observed between the group scores, which indicate the similarity of internal and external prioritisation results.
  3. Albahri OS, Zaidan AA, Zaidan BB, Hashim M, Albahri AS, Alsalem MA
    J Med Syst, 2018 Jul 25;42(9):164.
    PMID: 30043085 DOI: 10.1007/s10916-018-1006-6
    Promoting patient care is a priority for all healthcare providers with the overall purpose of realising a high degree of patient satisfaction. A medical centre server is a remote computer that enables hospitals and physicians to analyse data in real time and offer appropriate services to patients. The server can also manage, organise and support professionals in telemedicine. Therefore, a remote medical centre server plays a crucial role in sustainably delivering quality healthcare services in telemedicine. This article presents a comprehensive review of the provision of healthcare services in telemedicine applications, especially in the medical centre server. Moreover, it highlights the open issues and challenges related to providing healthcare services in the medical centre server within telemedicine. Methodological aspects to control and manage the process of healthcare service provision and three distinct and successive phases are presented. The first phase presents the identification process to propose a decision matrix (DM) on the basis of a crossover of 'multi-healthcare services' and 'hospital list' within intelligent data and service management centre (Tier 4). The second phase discusses the development of a DM for hospital selection on the basis of integrated VIKOR-Analytic Hierarchy Process (AHP) methods. Finally, the last phase examines the validation process for the proposed framework.
  4. Albahri AS, Zaidan AA, Albahri OS, Zaidan BB, Alsalem MA
    J Med Syst, 2018 Jun 23;42(8):137.
    PMID: 29936593 DOI: 10.1007/s10916-018-0983-9
    The burden on healthcare services in the world has increased substantially in the past decades. The quality and quantity of care have to increase to meet surging demands, especially among patients with chronic heart diseases. The expansion of information and communication technologies has led to new models for the delivery healthcare services in telemedicine. Therefore, mHealth plays an imperative role in the sustainable delivery of healthcare services in telemedicine. This paper presents a comprehensive review of healthcare service provision. It highlights the open issues and challenges related to the use of the real-time fault-tolerant mHealth system in telemedicine. The methodological aspects of mHealth are examined, and three distinct and successive phases are presented. The first discusses the identification process for establishing a decision matrix based on a crossover of 'time of arrival of patient at the hospital/multi-services' and 'hospitals' within mHealth. The second phase discusses the development of a decision matrix for hospital selection based on the MAHP method. The third phase discusses the validation of the proposed system.
  5. Mohsin AH, Zaidan AA, Zaidan BB, Albahri AS, Albahri OS, Alsalem MA, et al.
    J Med Syst, 2018 Oct 16;42(12):238.
    PMID: 30327939 DOI: 10.1007/s10916-018-1104-5
    The development of wireless body area sensor networks is imperative for modern telemedicine. However, attackers and cybercriminals are gradually becoming aware in attacking telemedicine systems, and the black market value of protected health information has the highest price nowadays. Security remains a formidable challenge to be resolved. Intelligent home environments make up one of the major application areas of pervasive computing. Security and privacy are the two most important issues in the remote monitoring and control of intelligent home environments for clients and servers in telemedicine architecture. The personal authentication approach that uses the finger vein pattern is a newly investigated biometric technique. This type of biometric has many advantages over other types (explained in detail later on) and is suitable for different human categories and ages. This study aims to establish a secure verification method for real-time monitoring systems to be used for the authentication of patients and other members who are working in telemedicine systems. The process begins with the sensor based on Tiers 1 and 2 (client side) in the telemedicine architecture and ends with patient verification in Tier 3 (server side) via finger vein biometric technology to ensure patient security on both sides. Multilayer taxonomy is conducted in this research to attain the study's goal. In the first layer, real-time remote monitoring studies based on the sensor technology used in telemedicine applications are reviewed and analysed to provide researchers a clear vision of security and privacy based on sensors in telemedicine. An extensive search is conducted to identify articles that deal with security and privacy issues, related applications are reviewed comprehensively and a coherent taxonomy of these articles is established. ScienceDirect, IEEE Xplore and Web of Science databases are checked for articles on mHealth in telemedicine based on sensors. A total of 3064 papers are collected from 2007 to 2017. The retrieved articles are filtered according to the security and privacy of telemedicine applications based on sensors. Nineteen articles are selected and classified into two categories. The first category, which accounts for 57.89% (n = 11/19), includes surveys on telemedicine articles and their applications. The second category, accounting for 42.1% (n = 8/19), includes articles on the three-tiered architecture of telemedicine. The collected studies reveal the essential need to construct another taxonomy layer and review studies on finger vein biometric verification systems. This map-matching for both taxonomies is developed for this study to go deeply into the sensor field and determine novel risks and benefits for patient security and privacy on client and server sides in telemedicine applications. In the second layer of our taxonomy, the literature on finger vein biometric verification systems is analysed and reviewed. In this layer, we obtain a final set of 65 articles classified into four categories. In the first category, 80% (n = 52/65) of the articles focus on development and design. In the second category, 12.30% (n = 8/65) includes evaluation and comparative articles. These articles are not intensively included in our literature analysis. In the third category, 4.61% (n = 3/65) includes articles about analytical studies. In the fourth category, 3.07% (n = 2/65) comprises reviews and surveys. This study aims to provide researchers with an up-to-date overview of studies that have been conducted on (user/patient) authentication to enhance the security level in telemedicine or any information system. In the current study, taxonomy is presented by explaining previous studies. Moreover, this review highlights the motivations, challenges and recommendations related to finger vein biometric verification systems and determines the gaps in this research direction (protection of finger vein templates in real time), which represent a new research direction in this area.
  6. Mohammed KI, Zaidan AA, Zaidan BB, Albahri OS, Albahri AS, Alsalem MA, et al.
    Comput Methods Programs Biomed, 2020 Mar;185:105151.
    PMID: 31710981 DOI: 10.1016/j.cmpb.2019.105151
    CONTEXT: Telemedicine has been increasingly used in healthcare to provide services to patients remotely. However, prioritising patients with multiple chronic diseases (MCDs) in telemedicine environment is challenging because it includes decision-making (DM) with regard to the emergency degree of each chronic disease for every patient.

    OBJECTIVE: This paper proposes a novel technique for reorganisation of opinion order to interval levels (TROOIL) to prioritise the patients with MCDs in real-time remote health-monitoring system.

    METHODS: The proposed TROOIL technique comprises six steps for prioritisation of patients with MCDs: (1) conversion of actual data into intervals; (2) rule generation; (3) rule ordering; (4) expert rule validation; (5) data reorganisation; and (6) criteria weighting and ranking alternatives within each rule. The secondary dataset of 500 patients from the most relevant study in a remote prioritisation area was adopted. The dataset contains three diseases, namely, chronic heart disease, high blood pressure (BP) and low BP.

    RESULTS: The proposed TROOIL is an effective technique for prioritising patients with MCDs. In the objective validation, remarkable differences were recognised among the groups' scores, indicating identical ranking results. In the evaluation of issues within all scenarios, the proposed framework has an advantage of 22.95% over the benchmark framework.

    DISCUSSION: Patients with the most severe MCD were treated first on the basis of their highest priority levels. The treatment for patients with less severe cases was delayed more than that for other patients.

    CONCLUSIONS: The proposed TROOIL technique can deal with multiple DM problems in prioritisation of patients with MCDs.

  7. Mohsin AH, Zaidan AA, Zaidan BB, Albahri OS, Albahri AS, Alsalem MA, et al.
    J Med Syst, 2019 May 22;43(7):192.
    PMID: 31115768 DOI: 10.1007/s10916-019-1264-y
    In medical systems for patient's authentication, keeping biometric data secure is a general problem. Many studies have presented various ways of protecting biometric data especially finger vein biometric data. Thus, It is needs to find better ways of securing this data by applying the three principles of information security aforementioned, and creating a robust verification system with high levels of reliability, privacy and security. Moreover, it is very difficult to replace biometric information and any leakage of biometrics information leads to earnest risks for example replay attacks using the robbed biometric data. In this paper presented criticism and analysis to all attempts as revealed in the literature review and discussion the proposes a novel verification secure framework based confidentiality, integrity and availability (CIA) standard in triplex blockchain-particle swarm optimization (PSO)-advanced encryption standard (AES) techniques for medical systems patient's authentication. Three stages are performed on discussion. Firstly, proposes a new hybrid model pattern in order to increase the randomization based on radio frequency identification (RFID) and finger vein biometrics. To achieve this, proposed a new merge algorithm to combine the RFID features and finger vein features in one hybrid and random pattern. Secondly, how the propose verification secure framework are followed the CIA standard for telemedicine authentication by combination of AES encryption technique, blockchain and PSO in steganography technique based on proposed pattern model. Finally, discussed the validation and evaluation of the proposed verification secure framework.
  8. Mohammed KI, Zaidan AA, Zaidan BB, Albahri OS, Alsalem MA, Albahri AS, et al.
    J Med Syst, 2019 Jun 11;43(7):223.
    PMID: 31187288 DOI: 10.1007/s10916-019-1362-x
    Remotely monitoring a patient's condition is a serious issue and must be addressed. Remote health monitoring systems (RHMS) in telemedicine refers to resources, strategies, methods and installations that enable doctors or other medical professionals to work remotely to consult, diagnose and treat patients. The goal of RHMS is to provide timely medical services at remote areas through telecommunication technologies. Through major advancements in technology, particularly in wireless networking, cloud computing and data storage, RHMS is becoming a feasible aspect of modern medicine. RHMS for the prioritisation of patients with multiple chronic diseases (MCDs) plays an important role in sustainably providing high-quality healthcare services. Further investigations are required to highlight the limitations of the prioritisation of patients with MCDs over a telemedicine environment. This study introduces a comprehensive and inclusive review on the prioritisation of patients with MCDs in telemedicine applications. Furthermore, it presents the challenges and open issues regarding patient prioritisation in telemedicine. The findings of this study are as follows: (1) The limitations and problems of existing patients' prioritisation with MCDs are presented and emphasised. (2) Based on the analysis of the academic literature, an accurate solution for remote prioritisation in a large scale of patients with MCDs was not presented. (3) There is an essential need to produce a new multiple-criteria decision-making theory to address the current problems in the prioritisation of patients with MCDs.
  9. Mohsin AH, Zaidan AA, Zaidan BB, Mohammed KI, Albahri OS, Albahri AS, et al.
    Multimed Tools Appl, 2021;80(9):14137-14161.
    PMID: 33519293 DOI: 10.1007/s11042-020-10284-y
    Secure updating and sharing for large amounts of healthcare information (such as medical data on coronavirus disease 2019 [COVID-19]) in efficient and secure transmission are important but challenging in communication channels amongst hospitals. In particular, in addressing the above challenges, two issues are faced, namely, those related to confidentiality and integrity of their health data and to network failure that may cause concerns about data availability. To the authors' knowledge, no study provides secure updating and sharing solution for large amounts of healthcare information in communication channels amongst hospitals. Therefore, this study proposes and discusses a novel steganography-based blockchain method in the spatial domain as a solution. The novelty of the proposed method is the removal and addition of new particles in the particle swarm optimisation (PSO) algorithm. In addition, hash function can hide secret medical COVID-19 data in hospital databases whilst providing confidentiality with high embedding capacity and high image quality. Moreover, stego images with hash data and blockchain technology are used in updating and sharing medical COVID-19 data between hospitals in the network to improve the level of confidentiality and protect the integrity of medical COVID-19 data in grey-scale images, achieve data availability if any connection failure occurs in a single point of the network and eliminate the central point (third party) in the network during transmission. The proposed method is discussed in three stages. Firstly, the pre-hiding stage estimates the embedding capacity of each host image. Secondly, the secret COVID-19 data hiding stage uses PSO algorithm and hash function. Thirdly, the transmission stage transfers the stego images based on blockchain technology and updates all nodes (hospitals) in the network. As proof of concept for the case study, the authors adopted the latest COVID-19 research published in the Computer Methods and Programs in Biomedicine journal, which presents a rescue framework within hospitals for the storage and transfusion of the best convalescent plasma to the most critical patients with COVID-19 on the basis of biological requirements. The validation and evaluation of the proposed method are discussed.
  10. Alsalem MA, Zaidan AA, Zaidan BB, Hashim M, Madhloom HT, Azeez ND, et al.
    Comput Methods Programs Biomed, 2018 May;158:93-112.
    PMID: 29544792 DOI: 10.1016/j.cmpb.2018.02.005
    CONTEXT: Acute leukaemia diagnosis is a field requiring automated solutions, tools and methods and the ability to facilitate early detection and even prediction. Many studies have focused on the automatic detection and classification of acute leukaemia and their subtypes to promote enable highly accurate diagnosis.

    OBJECTIVE: This study aimed to review and analyse literature related to the detection and classification of acute leukaemia. The factors that were considered to improve understanding on the field's various contextual aspects in published studies and characteristics were motivation, open challenges that confronted researchers and recommendations presented to researchers to enhance this vital research area.

    METHODS: We systematically searched all articles about the classification and detection of acute leukaemia, as well as their evaluation and benchmarking, in three main databases: ScienceDirect, Web of Science and IEEE Xplore from 2007 to 2017. These indices were considered to be sufficiently extensive to encompass our field of literature.

    RESULTS: Based on our inclusion and exclusion criteria, 89 articles were selected. Most studies (58/89) focused on the methods or algorithms of acute leukaemia classification, a number of papers (22/89) covered the developed systems for the detection or diagnosis of acute leukaemia and few papers (5/89) presented evaluation and comparative studies. The smallest portion (4/89) of articles comprised reviews and surveys.

    DISCUSSION: Acute leukaemia diagnosis, which is a field requiring automated solutions, tools and methods, entails the ability to facilitate early detection or even prediction. Many studies have been performed on the automatic detection and classification of acute leukaemia and their subtypes to promote accurate diagnosis.

    CONCLUSIONS: Research areas on medical-image classification vary, but they are all equally vital. We expect this systematic review to help emphasise current research opportunities and thus extend and create additional research fields.

  11. Alsalem MA, Zaidan AA, Zaidan BB, Hashim M, Albahri OS, Albahri AS, et al.
    J Med Syst, 2018 Sep 19;42(11):204.
    PMID: 30232632 DOI: 10.1007/s10916-018-1064-9
    This study aims to systematically review prior research on the evaluation and benchmarking of automated acute leukaemia classification tasks. The review depends on three reliable search engines: ScienceDirect, Web of Science and IEEE Xplore. A research taxonomy developed for the review considers a wide perspective for automated detection and classification of acute leukaemia research and reflects the usage trends in the evaluation criteria in this field. The developed taxonomy consists of three main research directions in this domain. The taxonomy involves two phases. The first phase includes all three research directions. The second one demonstrates all the criteria used for evaluating acute leukaemia classification. The final set of studies includes 83 investigations, most of which focused on enhancing the accuracy and performance of detection and classification through proposed methods or systems. Few efforts were made to undertake the evaluation issues. According to the final set of articles, three groups of articles represented the main research directions in this domain: 56 articles highlighted the proposed methods, 22 articles involved proposals for system development and 5 papers centred on evaluation and comparison. The other taxonomy side included 16 main and sub-evaluation and benchmarking criteria. This review highlights three serious issues in the evaluation and benchmarking of multiclass classification of acute leukaemia, namely, conflicting criteria, evaluation criteria and criteria importance. It also determines the weakness of benchmarking tools. To solve these issues, multicriteria decision-making (MCDM) analysis techniques were proposed as effective recommended solutions in the methodological aspect. This methodological aspect involves a proposed decision support system based on MCDM for evaluation and benchmarking to select suitable multiclass classification models for acute leukaemia. The said support system is examined and has three sequential phases. Phase One presents the identification procedure and process for establishing a decision matrix based on a crossover of evaluation criteria and acute leukaemia multiclass classification models. Phase Two describes the decision matrix development for the selection of acute leukaemia classification models based on the integrated Best and worst method (BWM) and VIKOR. Phase Three entails the validation of the proposed system.
  12. Mohsin AH, Zaidan AA, Zaidan BB, Ariffin SAB, Albahri OS, Albahri AS, et al.
    J Med Syst, 2018 Oct 29;42(12):245.
    PMID: 30374820 DOI: 10.1007/s10916-018-1103-6
    In real-time medical systems, the role of biometric technology is significant in authentication systems because it is used in verifying the identity of people through their biometric features. The biometric technology provides crucial properties for biometric features that can support the process of personal identification. The storage of biometric template within a central database makes it vulnerable to attack which can also occur during data transmission. Therefore, an alternative mechanism of protection becomes important to develop. On this basis, this study focuses on providing a detailed analysis of the extant literature (2013-2018) to identify the taxonomy and research distribution. Furthermore, this study also seeks to ascertain the challenges and motivations associated with biometric steganography in real-time medical systems to provide recommendations that can enhance the efficient use of real-time medical systems in biometric steganography and its applications. A review of articles on human biometric steganography in real-time medical systems obtained from three main databases (IEEE Xplore, ScienceDirect and Web of Science) is conducted according to an appropriate review protocol. Then, 41 related articles are selected by using exclusion and inclusion criteria. Majority of the studies reviewed had been conducted in the field of data-hiding (particularly steganography) technologies. In this review, various steganographic methods that have been applied in different human biometrics are investigated. Thereafter, these methods are categorised according to taxonomy, and the results are presented on the basis of human steganography biometric real-time medical systems, testing and evaluation methods, significance of use and applications and techniques. Finally, recommendations on how the challenges associated with data hiding can be addressed are provided to enhance the efficiency of using biometric information processed in any authentication real-time medical system. These recommendations are expected to be immensely helpful to developers, company users and researchers.
  13. Alsalem MA, Zaidan AA, Zaidan BB, Albahri OS, Alamoodi AH, Albahri AS, et al.
    J Med Syst, 2019 Jun 01;43(7):212.
    PMID: 31154550 DOI: 10.1007/s10916-019-1338-x
    This paper aims to assist the administration departments of medical organisations in making the right decision on selecting a suitable multiclass classification model for acute leukaemia. In this paper, we proposed a framework that will aid these departments in evaluating, benchmarking and ranking available multiclass classification models for the selection of the best one. Medical organisations have continuously faced evaluation and benchmarking challenges in such endeavour, especially when no single model is superior. Moreover, the improper selection of multiclass classification for acute leukaemia model may be costly for medical organisations. For example, when a patient dies, one such organisation will be legally or financially sued for incidents in which the model fails to fulfil its desired outcome. With regard to evaluation and benchmarking, multiclass classification models are challenging processes due to multiple evaluation and conflicting criteria. This study structured a decision matrix (DM) based on the crossover of 2 groups of multi-evaluation criteria and 22 multiclass classification models. The matrix was then evaluated with datasets comprising 72 samples of acute leukaemia, which include 5327 gens. Subsequently, multi-criteria decision-making (MCDM) techniques are used in the benchmarking and ranking of multiclass classification models. The MCDM used techniques that include the integrated BWM and VIKOR. BWM has been applied for the weight calculations of evaluation criteria, whereas VIKOR has been used to benchmark and rank classification models. VIKOR has also been employed in two decision-making contexts: individual and group decision making and internal and external group aggregation. Results showed the following: (1) the integration of BWM and VIKOR is effective at solving the benchmarking/selection problems of multiclass classification models. (2) The ranks of classification models obtained from internal and external VIKOR group decision making were almost the same, and the best multiclass classification model based on the two was 'Bayes. Naive Byes Updateable' and the worst one was 'Trees.LMT'. (3) Among the scores of groups in the objective validation, significant differences were identified, which indicated that the ranking results of internal and external VIKOR group decision making were valid.
  14. Alsalem MA, Albahri OS, Zaidan AA, Al-Obaidi JR, Alnoor A, Alamoodi AH, et al.
    Appl Intell (Dordr), 2022;52(9):9676-9700.
    PMID: 35035091 DOI: 10.1007/s10489-021-02813-5
    Mesenchymal stem cells (MSCs) have shown promising ability to treat critical cases of coronavirus disease 2019 (COVID-19) by regenerating lung cells and reducing immune system overreaction. However, two main challenges need to be addressed first before MSCs can be efficiently transfused to the most critical cases of COVID-19. First is the selection of suitable MSC sources that can meet the standards of stem cell criteria. Second is differentiating COVID-19 patients into different emergency levels automatically and prioritising them in each emergency level. This study presents an efficient real-time MSC transfusion framework based on multicriteria decision-making(MCDM) methods. In the methodology, the testing phase represents the ability to adhere to plastic surfaces, the upregulation and downregulation of specific surface protein markers and finally the ability to differentiate into different kinds of cells. In the development phase, firstly, two scenarios of an augmented dataset based on the medical perspective are generated to produce 80 patients with different emergency levels. Secondly, an automated triage algorithm based on a formal medical guideline is proposed for real-time monitoring of COVID-19 patients with different emergency levels (i.e. mild, moderate, severe and critical) considering the improvement and deterioration procedures from one level to another. Thirdly, a unique decision matrix for each triage level (except mild) is constructed on the basis of the intersection between the evaluation criteria of each emergency level and list of COVID-19 patients. Thereafter, MCDM methods (i.e. analytic hierarchy process [AHP] and vlsekriterijumska optimizcija i kaompromisno resenje [VIKOR]) are integrated to assign subjective weights for the evaluation criteria within each triage level and then prioritise the COVID-19 patients on the basis of individual and group decision-making(GDM) contexts. Results show that: (1) in both scenarios, the proposed algorithm effectively classified the patients into four emergency levels, including mild, moderate, severe and critical, taking into consideration the improvement and deterioration cases. (2) On the basis of experts' perspectives, clear differences in most individual prioritisations for patients with different emergency levels in both scenarios were found. (3) In both scenarios, COVID-19 patients were prioritised identically between the internal and external group VIKOR. During the evaluation, the statistical objective method indicated that the patient prioritisations underwent systematic ranking. Moreover, comparison analysis with previous work proved the efficiency of the proposed framework. Thus, the real-time MSC transfusion for COVID-19 patients can follow the order achieved in the group VIKOR results.
  15. Talal M, Zaidan AA, Zaidan BB, Albahri AS, Alamoodi AH, Albahri OS, et al.
    J Med Syst, 2019 Jan 15;43(3):42.
    PMID: 30648217 DOI: 10.1007/s10916-019-1158-z
    The Internet of Things (IoT) has been identified in various applications across different domains, such as in the healthcare sector. IoT has also been recognised for its revolution in reshaping modern healthcare with aspiring wide range prospects, including economical, technological and social. This study aims to establish IoT-based smart home security solutions for real-time health monitoring technologies in telemedicine architecture. A multilayer taxonomy is driven and conducted in this study. In the first layer, a comprehensive analysis on telemedicine, which focuses on the client and server sides, shows that other studies associated with IoT-based smart home applications have several limitations that remain unaddressed. Particularly, remote patient monitoring in healthcare applications presents various facilities and benefits by adopting IoT-based smart home technologies without compromising the security requirements and potentially large number of risks. An extensive search is conducted to identify articles that handle these issues, related applications are comprehensively reviewed and a coherent taxonomy for these articles is established. A total number of (n = 3064) are gathered between 2007 and 2017 for most reliable databases, such as ScienceDirect, Web of Science and Institute of Electrical and Electronic Engineer Xplore databases. Then, the articles based on IoT studies that are associated with telemedicine applications are filtered. Nine articles are selected and classified into two categories. The first category, which accounts for 22.22% (n = 2/9), includes surveys on telemedicine articles and their applications. The second category, which accounts for 77.78% (n = 7/9), includes articles on the client and server sides of telemedicine architecture. The collected studies reveal the essential requirement in constructing another taxonomy layer and review IoT-based smart home security studies. Therefore, IoT-based smart home security features are introduced and analysed in the second layer. The security of smart home design based on IoT applications is an aspect that represents a crucial matter for general occupants of smart homes, in which studies are required to provide a better solution with patient security, privacy protection and security of users' entities from being stolen or compromised. Innovative technologies have dispersed limitations related to this matter. The existing gaps and trends in this area should be investigated to provide valuable visions for technical environments and researchers. Thus, 67 articles are obtained in the second layer of our taxonomy and are classified into six categories. In the first category, 25.37% (n = 17/67) of the articles focus on architecture design. In the second category, 17.91% (n = 12/67) includes security analysis articles that investigate the research status in the security area of IoT-based smart home applications. In the third category, 10.44% (n = 7/67) includes articles about security schemes. In the fourth category, 17.91% (n = 12/67) comprises security examination. In the fifth category, 13.43% (n = 9/67) analyses security protocols. In the final category, 14.92% (n = 10/67) analyses the security framework. Then, the identified basic characteristics of this emerging field are presented and provided in the following aspects. Open challenges experienced on the development of IoT-based smart home security are addressed to be adopted fully in telemedicine applications. Then, the requirements are provided to increase researcher's interest in this study area. On this basis, a number of recommendations for different parties are described to provide insights on the next steps that should be considered to enhance the security of smart homes based on IoT. A map matching for both taxonomies is developed in this study to determine the novel risks and benefits of IoT-based smart home security for real-time remote health monitoring within client and server sides in telemedicine applications.
  16. Alsalem MA, Alsattar HA, Albahri AS, Mohammed RT, Albahri OS, Zaidan AA, et al.
    J Infect Public Health, 2021 Oct;14(10):1513-1559.
    PMID: 34538731 DOI: 10.1016/j.jiph.2021.08.026
    The problem complexity of multi-criteria decision-making (MCDM) has been raised in the distribution of coronavirus disease 2019 (COVID-19) vaccines, which required solid and robust MCDM methods. Compared with other MCDM methods, the fuzzy-weighted zero-inconsistency (FWZIC) method and fuzzy decision by opinion score method (FDOSM) have demonstrated their solidity in solving different MCDM challenges. However, the fuzzy sets used in these methods have neglected the refusal concept and limited the restrictions on their constants. To end this, considering the advantage of the T-spherical fuzzy sets (T-SFSs) in handling the uncertainty in the data and obtaining information with more degree of freedom, this study has extended FWZIC and FDOSM methods into the T-SFSs environment (called T-SFWZIC and T-SFDOSM) to be used in the distribution of COVID-19 vaccines. The methodology was formulated on the basis of decision matrix adoption and development phases. The first phase described the adopted decision matrix used in the COVID-19 vaccine distribution. The second phase presented the sequential formulation steps of T-SFWZIC used for weighting the distribution criteria followed by T-SFDOSM utilised for prioritising the vaccine recipients. Results revealed the following: (1) T-SFWZIC effectively weighted the vaccine distribution criteria based on several parameters including T = 2, T = 4, T = 6, T = 8, and T = 10. Amongst all parameters, the age criterion received the highest weight, whereas the geographic locations severity criterion has the lowest weight. (2) According to the T parameters, a considerable variance has occurred on the vaccine recipient orders, indicating that the existence of T values affected the vaccine distribution. (3) In the individual context of T-SFDOSM, no unique prioritisation was observed based on the obtained opinions of each expert. (4) The group context of T-SFDOSM used in the prioritisation of vaccine recipients was considered the final distribution result as it unified the differences found in an individual context. The evaluation was performed based on systematic ranking assessment and sensitivity analysis. This evaluation showed that the prioritisation results based on each T parameter were subject to a systematic ranking that is supported by high correlation results over all discussed scenarios of changing criteria weights values.
  17. Alsalem MA, Mohammed R, Albahri OS, Zaidan AA, Alamoodi AH, Dawood K, et al.
    Int J Intell Syst, 2022 Jun;37(6):3514-3624.
    PMID: 38607836 DOI: 10.1002/int.22699
    Considering the coronavirus disease 2019 (COVID-19) pandemic, the government and health sectors are incapable of making fast and reliable decisions, particularly given the various effects of decisions on different contexts or countries across multiple sectors. Therefore, leaders often seek decision support approaches to assist them in such scenarios. The most common decision support approach used in this regard is multiattribute decision-making (MADM). MADM can assist in enforcing the most ideal decision in the best way possible when fed with the appropriate evaluation criteria and aspects. MADM also has been of great aid to practitioners during the COVID-19 pandemic. Moreover, MADM shows resilience in mitigating consequences in health sectors and other fields. Therefore, this study aims to analyse the rise of MADM techniques in combating COVID-19 by presenting a systematic literature review of the state-of-the-art COVID-19 applications. Articles on related topics were searched in four major databases, namely, Web of Science, IEEE Xplore, ScienceDirect, and Scopus, from the beginning of the pandemic in 2019 to April 2021. Articles were selected on the basis of the inclusion and exclusion criteria for the identified systematic review protocol, and a total of 51 articles were obtained after screening and filtering. All these articles were formed into a coherent taxonomy to describe the corresponding current standpoints in the literature. This taxonomy was drawn on the basis of four major categories, namely, medical (n = 30), social (n = 4), economic (n = 13) and technological (n = 4). Deep analysis for each category was performed in terms of several aspects, including issues and challenges encountered, contributions, data set, evaluation criteria, MADM techniques, evaluation and validation and bibliography analysis. This study emphasised the current standpoint and opportunities for MADM in the midst of the COVID-19 pandemic and promoted additional efforts towards understanding and providing new potential future directions to fulfil the needs of this study field.
  18. Alsalem MA, Alamoodi AH, Albahri OS, Dawood KA, Mohammed RT, Alnoor A, et al.
    Artif Intell Rev, 2022;55(6):4979-5062.
    PMID: 35103030 DOI: 10.1007/s10462-021-10124-x
    The influence of the ongoing COVID-19 pandemic that is being felt in all spheres of our lives and has a remarkable effect on global health care delivery occurs amongst the ongoing global health crisis of patients and the required services. From the time of the first detection of infection amongst the public, researchers investigated various applications in the fight against the COVID-19 outbreak and outlined the crucial roles of different research areas in this unprecedented battle. In the context of existing studies in the literature surrounding COVID-19, related to medical treatment decisions, the dimensions of context addressed in previous multidisciplinary studies reveal the lack of appropriate decision mechanisms during the COVID-19 outbreak. Multiple criteria decision making (MCDM) has been applied widely in our daily lives in various ways with numerous successful stories to help analyse complex decisions and provide an accurate decision process. The rise of MCDM in combating COVID-19 from a theoretical perspective view needs further investigation to meet the important characteristic points that match integrating MCDM and COVID-19. To this end, a comprehensive review and an analysis of these multidisciplinary fields, carried out by different MCDM theories concerning COVID19 in complex case studies, are provided. Research directions on exploring the potentials of MCDM and enhancing its capabilities and power through two directions (i.e. development and evaluation) in COVID-19 are thoroughly discussed. In addition, Bibliometrics has been analysed, visualization and interpretation based on the evaluation and development category using R-tool involves; annual scientific production, country scientific production, Wordcloud, factor analysis in bibliographic, and country collaboration map. Furthermore, 8 characteristic points that go through the analysis based on new tables of information are highlighted and discussed to cover several important facts and percentages associated with standardising the evaluation criteria, MCDM theory in ranking alternatives and weighting criteria, operators used with the MCDM methods, normalisation types for the data used, MCDM theory contexts, selected experts ways, validation scheme for effective MCDM theory and the challenges of MCDM theory used in COVID-19 studies. Accordingly, a recommended MCDM theory solution is presented through three distinct phases as a future direction in COVID19 studies. Key phases of this methodology include the Fuzzy Delphi method for unifying criteria and establishing importance level, Fuzzy weighted Zero Inconsistency for weighting to mitigate the shortcomings of the previous weighting techniques and the MCDM approach by the name Fuzzy Decision by Opinion Score method for prioritising alternatives and providing a unique ranking solution. This study will provide MCDM researchers and the wider community an overview of the current status of MCDM evaluation and development methods and motivate researchers in harnessing MCDM potentials in tackling an accurate decision for different fields against COVID-19.
  19. Albahri AS, Hamid RA, Alwan JK, Al-Qays ZT, Zaidan AA, Zaidan BB, et al.
    J Med Syst, 2020 May 25;44(7):122.
    PMID: 32451808 DOI: 10.1007/s10916-020-01582-x
    Coronaviruses (CoVs) are a large family of viruses that are common in many animal species, including camels, cattle, cats and bats. Animal CoVs, such as Middle East respiratory syndrome-CoV, severe acute respiratory syndrome (SARS)-CoV, and the new virus named SARS-CoV-2, rarely infect and spread among humans. On January 30, 2020, the International Health Regulations Emergency Committee of the World Health Organisation declared the outbreak of the resulting disease from this new CoV called 'COVID-19', as a 'public health emergency of international concern'. This global pandemic has affected almost the whole planet and caused the death of more than 315,131 patients as of the date of this article. In this context, publishers, journals and researchers are urged to research different domains and stop the spread of this deadly virus. The increasing interest in developing artificial intelligence (AI) applications has addressed several medical problems. However, such applications remain insufficient given the high potential threat posed by this virus to global public health. This systematic review addresses automated AI applications based on data mining and machine learning (ML) algorithms for detecting and diagnosing COVID-19. We aimed to obtain an overview of this critical virus, address the limitations of utilising data mining and ML algorithms, and provide the health sector with the benefits of this technique. We used five databases, namely, IEEE Xplore, Web of Science, PubMed, ScienceDirect and Scopus and performed three sequences of search queries between 2010 and 2020. Accurate exclusion criteria and selection strategy were applied to screen the obtained 1305 articles. Only eight articles were fully evaluated and included in this review, and this number only emphasised the insufficiency of research in this important area. After analysing all included studies, the results were distributed following the year of publication and the commonly used data mining and ML algorithms. The results found in all papers were discussed to find the gaps in all reviewed papers. Characteristics, such as motivations, challenges, limitations, recommendations, case studies, and features and classes used, were analysed in detail. This study reviewed the state-of-the-art techniques for CoV prediction algorithms based on data mining and ML assessment. The reliability and acceptability of extracted information and datasets from implemented technologies in the literature were considered. Findings showed that researchers must proceed with insights they gain, focus on identifying solutions for CoV problems, and introduce new improvements. The growing emphasis on data mining and ML techniques in medical fields can provide the right environment for change and improvement.
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links