Displaying all 4 publications

Abstract:
Sort:
  1. Nilashi M, Abumalloh RA, Alyami S, Alghamdi A, Alrizq M
    Brain Sci, 2023 Mar 24;13(4).
    PMID: 37190508 DOI: 10.3390/brainsci13040543
    Parkinson's disease (PD) is a complex degenerative brain disease that affects nerve cells in the brain responsible for body movement. Machine learning is widely used to track the progression of PD in its early stages by predicting unified Parkinson's disease rating scale (UPDRS) scores. In this paper, we aim to develop a new method for PD diagnosis with the aid of supervised and unsupervised learning techniques. Our method is developed using the Laplacian score, Gaussian process regression (GPR) and self-organizing maps (SOM). SOM is used to segment the data to handle large PD datasets. The models are then constructed using GPR for the prediction of the UPDRS scores. To select the important features in the PD dataset, we use the Laplacian score in the method. We evaluate the developed approach on a PD dataset including a set of speech signals. The method was evaluated through root-mean-square error (RMSE) and adjusted R-squared (adjusted R²). Our findings reveal that the proposed method is efficient in the prediction of UPDRS scores through a set of speech signals (dysphonia measures). The method evaluation showed that SOM combined with the Laplacian score and Gaussian process regression with the exponential kernel provides the best results for R-squared (Motor-UPDRS = 0.9489; Total-UPDRS = 0.9516) and RMSE (Motor-UPDRS = 0.5144; Total-UPDRS = 0.5105) in predicting UPDRS compared with the other kernels in Gaussian process regression.
  2. Nilashi M, Abumalloh RA, Ahmadi H, Samad S, Alrizq M, Abosaq H, et al.
    Heliyon, 2023 Nov;9(11):e21828.
    PMID: 38034804 DOI: 10.1016/j.heliyon.2023.e21828
    Customer Relationship Management (CRM) is a method of management that aims to establish, develop, and improve relationships with targeted customers in order to maximize corporate profitability and customer value. There have been many CRM systems in the market. These systems are developed based on the combination of business requirements, customer needs, and industry best practices. The impact of CRM systems on the customers' satisfaction and competitive advantages as well as tangible and intangible benefits are widely investigated in the previous studies. However, there is a lack of studies to assess the quality dimensions of these systems to meet an organization's CRM strategy. This study aims to investigate customers' satisfaction with CRM systems through online reviews. We collected 5172 online customers' reviews from 8 CRM systems in the Google play store platform. The satisfaction factors were extracted using Latent Dirichlet Allocation (LDA) and grouped into three dimensions; information quality, system quality, and service quality. Data segmentation is performed using Learning Vector Quantization (LVQ). In addition, feature selection is performed by the entropy-weight approach. We then used the Adaptive Neuro Fuzzy Inference System (ANFIS), the hybrid of fuzzy logic and neural networks, to assess the relationship between these dimensions and customer satisfaction. The results are discussed and research implications are provided.
  3. Zogaan WA, Nilashi M, Ahmadi H, Abumalloh RA, Alrizq M, Abosaq H, et al.
    MethodsX, 2024 Jun;12:102553.
    PMID: 38292319 DOI: 10.1016/j.mex.2024.102553
    Parkinson's Disease (PD) is a common disorder of the central nervous system. The Unified Parkinson's Disease Rating Scale or UPDRS is commonly used to track PD symptom progression because it displays the presence and severity of symptoms. To model the relationship between speech signal properties and UPDRS scores, this study develops a new method using Neuro-Fuzzy (ANFIS) and Optimized Learning Rate Learning Vector Quantization (OLVQ1). ANFIS is developed for different Membership Functions (MFs). The method is evaluated using Parkinson's telemonitoring dataset which includes a total of 5875 voice recordings from 42 individuals in the early stages of PD which comprises 28 men and 14 women. The dataset is comprised of 16 vocal features and Motor-UPDRS, and Total-UPDRS. The method is compared with other learning techniques. The results show that OLVQ1 combined with the ANFIS has provided the best results in predicting Motor-UPDRS and Total-UPDRS. The lowest Root Mean Square Error (RMSE) values (UPDRS (Total)=0.5732; UPDRS (Motor)=0.5645) and highest R-squared values (UPDRS (Total)=0.9876; UPDRS (Motor)=0.9911) are obtained by this method. The results are discussed and directions for future studies are presented.i.ANFIS and OLVQ1 are combined to predict UPDRS.ii.OLVQ1 is used for PD data segmentation.iii.ANFIS is developed for different MFs to predict Motor-UPDRS and Total-UPDRS.
  4. Abumalloh RA, Nilashi M, Samad S, Ahmadi H, Alghamdi A, Alrizq M, et al.
    Ageing Res Rev, 2024 Apr;96:102285.
    PMID: 38554785 DOI: 10.1016/j.arr.2024.102285
    Parkinson's Disease (PD) is a progressive neurodegenerative illness triggered by decreased dopamine secretion. Deep Learning (DL) has gained substantial attention in PD diagnosis research, with an increase in the number of published papers in this discipline. PD detection using DL has presented more promising outcomes as compared with common machine learning approaches. This article aims to conduct a bibliometric analysis and a literature review focusing on the prominent developments taking place in this area. To achieve the target of the study, we retrieved and analyzed the available research papers in the Scopus database. Following that, we conducted a bibliometric analysis to inspect the structure of keywords, authors, and countries in the surveyed studies by providing visual representations of the bibliometric data using VOSviewer software. The study also provides an in-depth review of the literature focusing on different indicators of PD, deployed approaches, and performance metrics. The outcomes indicate the firm development of PD diagnosis using DL approaches over time and a large diversity of studies worldwide. Additionally, the literature review presented a research gap in DL approaches related to incremental learning, particularly in relation to big data analysis.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links