Displaying all 6 publications

Abstract:
Sort:
  1. Alreshidi MA, Alsalamah AA, Hamat RA, Neela V, Alshrari AS, Atshan SS, et al.
    Eur J Clin Microbiol Infect Dis, 2013 Jun;32(6):755-61.
    PMID: 23318757 DOI: 10.1007/s10096-012-1801-9
    One hundred and twenty methicillin-resistant Staphylococcus aureus (MRSA) isolated from cancer and non-cancer patients in Saudi Arabia were investigated for antibiotic resistance, virulence determinants and genotypes. The majority of MRSA isolates from cancer (n = 44, 73.3 %) and non-cancer patients (n = 34, 56.7 %) were multi-resistant to more than four classes of antibiotics. Virulence gene profiling showed that all strains were commonly positive for adhesin genes, except ebps and bbp genes, which were not detected in any isolate. Although the presence of adhesin genes varied slightly among MRSA isolates from cancer and non-cancer patients, these variations were not found to be statistically significant. In contrast, the presence of the toxin genes seb, sec, seg and sei was significantly elevated in MRSA strains isolated from cancer patients. Multilocus sequence typing (MLST) detected six and nine sequence types (STs) among isolates from cancer and non-cancer patients, respectively. Using spa typing, 12 and 25 types were detected, including four new types. The ability of different MRSA clones to become multi-resistant and their ability to acquire different virulence factors may contribute to their success as pathogens in individual groups of patients.
  2. Shamsudin MN, Alreshidi MA, Hamat RA, Alshrari AS, Atshan SS, Neela V
    J Hosp Infect, 2012 Jul;81(3):206-8.
    PMID: 22633074 DOI: 10.1016/j.jhin.2012.04.015
    The minimum inhibitory concentrations (MICs) of 60 meticillin-resistant Staphylococcus aureus (MRSA) isolates from Malaysia to three antiseptic agents - benzalkonium chloride (BZT), benzethonium chloride (BAC) and chlorhexidine digluconate (CHG) - were determined. All isolates had MICs ranging from 0.5 to 2 mg/L. Antiseptic resistance genes qacA/B and smr were detected in 83.3% and 1.6% of the isolates, respectively. Carriage of qacA/B correlated with reduced susceptibility to CHG and BAC. This is the first report of the prevalence of qacA/B and smr gene carriage in Malaysian MRSA isolates, with a high frequency of qacA/B carriage. The presence of these antiseptic resistance genes and associated reduced susceptibility to antiseptic agents may have clinical implications.
  3. Atshan SS, Shamsudin MN, Sekawi Z, Thian Lung LT, Barantalab F, Liew YK, et al.
    Front Microbiol, 2015;6:524.
    PMID: 26089817 DOI: 10.3389/fmicb.2015.00524
    Staphylococcus aureus is well known for its biofilm formation with rapid emergence of new clones circulating worldwide. The main objectives of the study were (1) to identify possible differences in protein expression among various and closely related clonal types of S. aureus, (2) to establish the differences in protein expression in terms of size of protein spots and its intensities between bacteria which are grown statically (biofilm formation) with that of under aeration and agitation, and (3) to compare the differences in protein expression as a function of time (in hours). In this study, we selected six clinical isolates comprising two similar (MRSA-527 and MRSA-524) and four different (MRSA-139, MSSA-12E, MSSA-22d, and MSSA-10E) types identified by spa typing, MLST and SCCmec typing. We performed 2D gel migration comparison. Also, two MRSA isolates (527 and 139) were selected to determine quantitative changes in the level of extracellular proteins at different biofilm growth time points of 12, 24, and 48 h. The study was done using a strategy that combines 2-DGE and LC-MS/MS analysis for absolute quantification and identification of the extracellular proteins. The 2DGE revealed that the proteomic profiles for the isolates belonging to the similar spa, MLST, and SCCmec types were still quite different. Among the extracellular proteins secreted at different time points of biofilm formation, significant changes in protein expression were observed at 48 h incubation as compared to the exponential growth at 12 h incubation. The main conclusion of the work is that the authors do observe differences among isolates, and growth conditions do influence the protein content at different time points of biofilm formation.
  4. VasanthaKumari N, Alshrari ASD, Rad EG, Moghaddam HG, van Belkum A, Alreshidi MA, et al.
    J Med Microbiol, 2009 Nov;58(Pt 11):1531-1532.
    PMID: 19589902 DOI: 10.1099/jmm.0.011692-0
  5. Khan AU, Qutob M, Gacem A, Rafatullah M, Yadav KK, Kumar P, et al.
    Toxicology, 2024 Dec;509:153985.
    PMID: 39510373 DOI: 10.1016/j.tox.2024.153985
    Nanotechnology arising in wide-ranging areas, covers extensively different ranges of approaches attained from fields such as biology, chemistry, physics, and medicine engineering. Nanoparticles are a necessary part of nanotechnology effectually applied in the cure of a number of diseases. Nanoparticles have gained significant importance due to their unique properties, which differ from their bulk counterparts. These distinct properties of nanoparticles are primarily influenced by their morphology, size, and size distribution. At the nanoscale, nanoparticles exhibit behaviours that can enhance therapeutic efficacy and reduce drug toxicity. Their small size and large surface area make them promising candidates for applications such as targeted drug delivery, where they can improve treatment outcomes while minimizing adverse effects. The harmful effects of nanoparticles on the environment were critically investigated to obtain appropriate results and reduce the risk by incorporating the materials. Nanoparticles tend to penetrate the human body, clear the biological barriers to reach sensitive organs and are easily incorporated into human tissue, as well as dispersing to the hepatic tissues, heart tissues, encephalum, and GI tract. This study aims to examine a wide variety of nanoparticles, focusing on their manufacturing methods, functional characteristics, and interactions within biological systems. Particular attention will be directed towards assessing the toxicity of nanoparticles in different organs and physiological systems, yielding a thorough comprehension of their potential health hazards and the processes that drive nanoparticle-induced toxicity. This analysis will also emphasize recent developments in nanoparticle applications and safety assessment methodologies.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links