Displaying all 2 publications

Abstract:
Sort:
  1. Gustafsson M, Gustafsson L, Alloysius D, Falck J, Yap S, Karlsson A, et al.
    Data Brief, 2016 Mar;6:466-70.
    PMID: 26900591 DOI: 10.1016/j.dib.2015.12.048
    The data presented in this paper is supporting the research article "Life history traits predict the response to increased light among 33 tropical rainforest tree species" [3]. We show basic growth and survival data collected over the 6 years duration of the experiment, as well as data from traits inventories covering 12 tree traits collected prior to and after a canopy reduction treatment in 2013. Further, we also include canopy closure and forest light environment data from measurements with hemispherical photographs before and after the treatment.
  2. Sundqvist MK, Hasselquist NJ, Jensen J, Runesson J, Goodman RC, Axelsson EP, et al.
    Sci Rep, 2024 Jul 22;14(1):16772.
    PMID: 39039098 DOI: 10.1038/s41598-024-65138-6
    Secondary tropical forests are at the forefront of deforestation pressures. They store large amounts of carbon, which, if compensated for to avoid net emissions associated with conversion to non-forest uses, may help advance tropical forest conservation. We measured above- and below-ground carbon stocks down to 1 m soil depth across a secondary forest and in oil palm plantations in Malaysia. We calculated net carbon losses when converting secondary forests to oil palm plantations and estimated payments to avoid net emissions arising from land conversion to a 22-year oil palm rotation, based on land opportunity costs per hectare. We explored how estimates would vary between forests by also extracting carbon stock data for primary forest from the literature. When tree and soil carbon was accounted for, payments of US$18-51 tCO2-1 for secondary forests and US$14-40 tCO2-1 for primary forest would equal opportunity costs associated with oil palm plantations per hectare. If detailed assessments of soil carbon were not accounted for, payments to offset opportunity costs would need to be considerably higher for secondary forests (US$28-80 tCO2-1). These results show that assessment of carbon stocks down to 1 m soil depth in tropical forests can substantially influence the estimated value of avoided-emission payments.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links