Displaying all 3 publications

Abstract:
Sort:
  1. Al Mutair A, Layqah L, Alhassan B, Alkhalifah S, Almossabeh M, AlSaleh T, et al.
    Sci Rep, 2022 Dec 12;12(1):21487.
    PMID: 36509906 DOI: 10.1038/s41598-022-26042-z
    The economic impact of the COVID-19 pandemic on global health systems is a major concern. To plan and allocate resources to treat COVID-19 patients and provide insights into the financial sustainability of healthcare systems in fighting the future pandemic, measuring the costs to treat COVID-19 patients is deemed necessary. As such, we conducted a retrospective, real-world observational study to measure the direct medical cost of treating COVID-19 patients at a tertiary care hospital in Saudi Arabia. The analysis was conducted using primary data and a mixed methodology of micro and macro-costing. Between July 2020 and July 2021, 287 patients with confirmed COVID-19 were admitted and their data were analyzed. COVID-19 infection was confirmed by RT-PCR or serologic tests in all the included patients. There were 60 cases of mild to moderate disease, 148 cases of severe disease, and 79 critically ill patients. The cost per case for mild to moderate disease, severe disease, and critically ill was 2003 USD, 14,545 USD, and 20,188 USD, respectively. There was a statistically significant difference in the cost between patients with comorbidities and patients without comorbidities (P-value 0.008). Across patients with and without comorbidities, there was a significant difference in the cost of the bed, laboratory work, treatment medications, and non-pharmaceutical equipment. The cost of treating COVID-19 patients is considered a burden for many countries. More studies from different private and governmental hospitals are needed to compare different study findings for better preparation for the current COVID-19 as well as future pandemics.
  2. Rabaan AA, Al-Ahmed SH, Al-Malkey M, Alsubki R, Ezzikouri S, Al-Hababi FH, et al.
    Infez Med, 2021 03 01;29(1):10-19.
    PMID: 33664169
    Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a pandemic worldwide. On a daily basis the number of deaths associated with COVID-19 is rapidly increasing. The main transmission route of SARS-CoV-2 is through the air (airborne transmission). This review details the airborne transmission of SARS-CoV-2, the aerodynamics, and different modes of transmission (e.g. droplets, droplet nuclei, and aerosol particles). SARS-CoV-2 can be transmitted by an infected person during activities such as expiration, coughing, sneezing, and talking. During such activities and some medical procedures, aerosols and droplets contaminated with SARS-CoV-2 particles are formed. Depending on their sizes and the environmental conditions, such particles stay viable in the air for varying time periods and can cause infection in a susceptible host. Very few studies have been conducted to establish the mechanism or the aerodynamics of virus-loaded particles and droplets in causing infection. In this review we discuss the various forms in which SARS-CoV-2 virus particles can be transmitted in air and cause infections.
  3. Rabaan AA, Mutair AA, Hajissa K, Alfaraj AH, Al-Jishi JM, Alhajri M, et al.
    Vaccines (Basel), 2022 Oct 02;10(10).
    PMID: 36298520 DOI: 10.3390/vaccines10101655
    Since the first case of Coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 2019, SARS-CoV-2 infection has affected many individuals worldwide. Eventually, some highly infectious mutants-caused by frequent genetic recombination-have been reported for SARS-CoV-2 that can potentially escape from the immune responses and induce long-term immunity, linked with a high mortality rate. In addition, several reports stated that vaccines designed for the SARS-CoV-2 wild-type variant have mixed responses against the variants of concern (VOCs) and variants of interest (VOIs) in the human population. These results advocate the designing and development of a panvaccine with the potential to neutralize all the possible emerging variants of SARS-CoV-2. In this context, recent discoveries suggest the design of SARS-CoV-2 panvaccines using nanotechnology, siRNA, antibodies or CRISPR-Cas platforms. Thereof, the present comprehensive review summarizes the current vaccine design approaches against SARS-CoV-2 infection, the role of genetic mutations in the emergence of new viral variants, the efficacy of existing vaccines in limiting the infection of emerging SARS-CoV-2 variants, and efforts or challenges in designing SARS panvaccines.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links