Displaying all 2 publications

Abstract:
Sort:
  1. Bhanderi M, Shah J, Gorain B, Nair AB, Jacob S, Asdaq SMB, et al.
    Materials (Basel), 2021 Oct 22;14(21).
    PMID: 34771817 DOI: 10.3390/ma14216291
    Rivastigmine, a reversible cholinesterase inhibitor, is frequently indicated in the management of demented conditions associated with Alzheimer disease. The major hurdle of delivering this drug through the oral route is its poor bioavailability, which prompted the development of novel delivery approaches for improved efficacy. Due to numerous beneficial properties associated with nanocarriers in the drug delivery system, rivastigmine nanoparticles were fabricated to be administer through the intranasal route. During the development of the nanoparticles, preliminary optimization of processing and formulation parameters was done by the design of an experimental approach. The drug-polymer ratio, stirrer speed, and crosslinking time were fixed as independent variables, to analyze the effect on the entrapment efficiency (% EE) and in vitro drug release of the drug. The formulation (D8) obtained from 23 full factorial designs was further coated using Eudragit EPO to extend the release pattern of the entrapped drug. Furthermore, the 1:1 ratio of core to polymer depicted spherical particle size of ~175 nm, % EE of 64.83%, 97.59% cumulative drug release, and higher flux (40.39 ± 3.52 µg.h/cm2). Finally, the intranasal ciliotoxicity study on sheep nasal mucosa revealed that the exposure of developed nanoparticles was similar to the negative control group, while destruction of normal architecture was noticed in the positive control test group. Overall, from the in vitro results it could be summarized that the optimization of nanoparticles' formulation of rivastigmine for intranasal application would be retained at the application site for a prolonged duration to release the entrapped drug without producing any local toxicity at the mucosal region.
  2. Hussain R, Ullah H, Rahim F, Sarfraz M, Taha M, Iqbal R, et al.
    Molecules, 2022 Sep 18;27(18).
    PMID: 36144820 DOI: 10.3390/molecules27186087
    Twenty-four analogues of benzimidazole-based thiazoles (1-24) were synthesized and assessed for their in vitro acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitory potential. All analogues were found to exhibit good inhibitory potential against cholinesterase enzymes, having IC50 values in the ranges of 0.10 ± 0.05 to 11.10 ± 0.30 µM (for AChE) and 0.20 ± 0.050 µM to 14.20 ± 0.10 µM (for BuChE) as compared to the standard drug Donepezil (IC50 = 2.16 ± 0.12 and 4.5 ± 0.11 µM, respectively). Among the series, analogues 16 and 21 were found to be the most potent inhibitors of AChE and BuChE enzymes. The number (s), types, electron-donating or -withdrawing effects and position of the substituent(s) on the both phenyl rings B & C were the primary determinants of the structure-activity relationship (SAR). In order to understand how the most active derivatives interact with the amino acids in the active site of the enzyme, molecular docking studies were conducted. The results obtained supported the experimental data. Additionally, the structures of all newly synthesized compounds were elucidated by using several spectroscopic methods like 13C-NMR, 1H-NMR and HR EIMS.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links