Displaying all 2 publications

Abstract:
Sort:
  1. Suleman M, Faizullah, Khan A, Mohammad Sayaf A, Alghamdi A, Alghamdi SA, et al.
    Curr Med Chem, 2024 Aug 27.
    PMID: 39253929 DOI: 10.2174/0109298673311962240815055821
    BACKGROUND: Colorectal cancer (CRC) stands as the third most widespread cancer worldwide in both men and women, witnessing a concerning rise, especially in younger demographics. Abnormal activation of the Non-Receptor Tyrosine Kinase c-Src has been linked to the advancement of several human cancers, including colorectal, breast, lung, and pancreatic ones. The interaction between c-Src and Hexokinase 2 (HK2) triggers enzyme phosphorylation, significantly boosting glycolysis, and ultimately contributing to the development of CRC.

    OBJECTIVES: The objectives of this study are to examine the influence of newly identified mutations on the interaction between c-Src and the HK2 enzyme and to discover potent phytocompounds capable of disrupting this interaction.

    METHODS: In this study, we utilized molecular docking to check the effect of the identified mutation on the binding of c-Src with HK2. Virtual drug screening, MD simulation, and binding free energy were employed to identify potent drugs against the binding interface of c-Src and HK2.

    RESULTS: Among these mutations, six (W151C, L272P, A296S, A330D, R391H, and P434A) were observed to significantly disrupt the stability of the c-Src structure. Additionally, through molecular docking analysis, we demonstrated that the mutant forms of c-Src exhibited high binding affinities with HK2. The wildtype showed a docking score of -271.80 kcal/mol, while the mutants displayed scores of -280.77 kcal/mol, -369.01 kcal/mol, -324.41 kcal/mol, -362.18 kcal/mol, 266.77 kcal/mol, and -243.28 kcal/mol for W151C, L272P, A296S, A330D, R391H, and P434A respectively. Furthermore, we identified five lead phytocompounds showing strong potential to impede the binding of c-Src with HK2 enzyme, essential for colon cancer progression. These compounds exhibit robust bonding with c-Src with docking scores of -7.37 kcal/mol, -7.26 kcal/mol, -6.88 kcal/mol, -6.81 kcal/mol, and -6.73 kcal/mol. Moreover, these compounds demonstrate dynamic stability, structural compactness, and the lowest residual fluctuation during MD simulation. The binding free energies for the top five hits (-42.44±0.28 kcal/mol, -28.31±0.25 kcal/mol, -34.95±0.44 kcal/mol, -38.92±0.25 kcal/mol, and -30.34±0.27 kcal/mol), further affirm the strong interaction of these drugs with c-Src which might impede the cascade of events that drive the progression of colon cancer.

    CONCLUSION: Our findings serve as a promising foundation, paving the way for future discoveries in the fight against colorectal cancer.

  2. Badi N, Theodore AM, Alghamdi SA, Al-Aoh HA, Lakhouit A, Singh PK, et al.
    Polymers (Basel), 2022 Jul 30;14(15).
    PMID: 35956616 DOI: 10.3390/polym14153101
    In recent decades, the enhancement of the properties of electrolytes and electrodes resulted in the development of efficient electrochemical energy storage devices. We herein reported the impact of the different polymer electrolytes in terms of physicochemical, thermal, electrical, and mechanical properties of lithium-ion batteries (LIBs). Since LIBs use many groups of electrolytes, such as liquid electrolytes, quasi-solid electrolytes, and solid electrolytes, the efficiency of the full device relies on the type of electrolyte used. A good electrolyte is the one that, when used in Li-ion batteries, exhibits high Li+ diffusion between electrodes, the lowest resistance during cycling at the interfaces, a high capacity of retention, a very good cycle-life, high thermal stability, high specific capacitance, and high energy density. The impact of various polymer electrolytes and their components has been reported in this work, which helps to understand their effect on battery performance. Although, single-electrolyte material cannot be sufficient to fulfill the requirements of a good LIB. This review is aimed to lead toward an appropriate choice of polymer electrolyte for LIBs.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links