Displaying all 6 publications

Abstract:
Sort:
  1. Kupaei RH, Alengaram UJ, Jumaat MZ
    ScientificWorldJournal, 2014;2014:898536.
    PMID: 25531006 DOI: 10.1155/2014/898536
    This paper presents the experimental results of an on-going research project on geopolymer lightweight concrete using two locally available waste materials--low calcium fly ash (FA) and oil palm shell (OPS)--as the binder and lightweight coarse aggregate, respectively. OPS was pretreated with three different alkaline solutions of sodium hydroxide (NaOH), potassium hydroxide, and sodium silicate as well as polyvinyl alcohol (PVA) for 30 days; afterwards, oil palm shell geopolymer lightweight concrete (OPSGPC) was cast by using both pretreated and untreated OPSs. The effect of these solutions on the water absorption of OPS, and the development of compressive strength in different curing conditions of OPSGPC produced by pretreated OPS were investigated; subsequently the influence of NaOH concentration, alkaline solution to FA ratio (A/FA), and different curing regimes on the compressive strength and density of OPSGPC produced by untreated OPS was inspected. The 24-hour water absorption value for OPS pretreated with 20% and 50% PVA solution was about 4% compared to 23% for untreated OPS. OPSGPC produced from OPS treated with 50% PVA solution produced the highest compressive strength of about 30 MPa in ambient cured condition. The pretreatment with alkaline solution did not have a significant positive effect on the water absorption of OPS aggregate and the compressive strength of OPSGPC. The result revealed that a maximum compressive strength of 32 MPa could be obtained at a temperature of 65°C and curing period of 4 days. This investigation also found that an A/FA ratio of 0.45 has the optimum amount of alkaline liquid and it resulted in the highest level of compressive strength.
  2. Ranjbar N, Mehrali M, Behnia A, Javadi Pordsari A, Mehrali M, Alengaram UJ, et al.
    PLoS One, 2016;11(1):e0147546.
    PMID: 26807825 DOI: 10.1371/journal.pone.0147546
    As a cementitious material, geopolymers show a high quasi-brittle behavior and a relatively low fracture energy. To overcome such a weakness, incorporation of fibers to a brittle matrix is a well-known technique to enhance the flexural properties. This study comprehensively evaluates the short and long term impacts of different volume percentages of polypropylene fiber (PPF) reinforcement on fly ash based geopolymer composites. Different characteristics of the composite were compared at fresh state by flow measurement and hardened state by variation of shrinkage over time to assess the response of composites under flexural and compressive load conditions. The fiber-matrix interface, fiber surface and toughening mechanisms were assessed using field emission scan electron microscopy (FESEM) and atomic force microscopy (AFM). The results show that incorporation of PPF up to 3 wt % into the geopolymer paste reduces the shrinkage and enhances the energy absorption of the composites. While, it might reduce the ultimate flexural and compressive strength of the material depending on fiber content.
  3. Hosen MA, Alengaram UJ, Jumaat MZ, Sulong NHR, Darain KMU
    Polymers (Basel), 2017 May 19;9(5).
    PMID: 30970858 DOI: 10.3390/polym9050180
    Reinforced concrete (RC) structures require strengthening for numerous factors, such as increased load, modification of the structural systems, structural upgrade or errors in the design and construction stages. The side near-surface mounted (SNSM) strengthening technique with glass fiber-reinforced polymer (GFRP) bars is a relatively new emerging technique for enhancing the flexural capacities of existing RC elements. Nine RC rectangular beams were flexurally strengthened with this technique and tested under four-point bending loads until failure. The main goal of this study is to optimize the structural capacity of the RC beams by varying the amount of strengthening reinforcement and bond length. The experimental test results showed that strengthening with SNSM GFRP bars significantly enhanced the flexural responses of the specimens compared with the control specimen. The first cracking and ultimate loads, energy absorption capacities, ductility and stiffness were remarkably enhanced by the SNSM technique. It was also confirmed that the bond length of the strengthened reinforcement greatly influences the energy absorption capacities, ductility and stiffness. The effect of the bond length on these properties is more significant compared to the amount of strengthening reinforcement.
  4. Hosen MA, Jumaat MZ, Alengaram UJ, Islam ABMS, Bin Hashim H
    Polymers (Basel), 2016 Mar 03;8(3).
    PMID: 30979167 DOI: 10.3390/polym8030067
    Existing structural components require strengthening after a certain period of time due to increases in service loads, errors in design, mechanical damage, and the need to extend the service period. Externally-bonded reinforcement (EBR) and near-surface mounted (NSM) reinforcement are two preferred strengthening approach. This paper presents a NSM technique incorporating NSM composites, namely steel and carbon fiber-reinforced polymer (CFRP) bars, as reinforcement. Experimental and analytical studies carried out to explore the performance of reinforced concrete (RC) members strengthened with the NSM composites. Analytical models were developed in predicting the maximum crack spacing and width, concrete cover separation failure loads, and deflection. A four-point bending test was applied on beams strengthened with different types and ratios of NSM reinforcement. The failure characteristics, yield, and ultimate capacities, deflection, strain, and cracking behavior of the beams were evaluated based on the experimental output. The test results indicate an increase in the cracking load of 69% and an increase in the ultimate load of 92% compared with the control beam. The predicted result from the analytical model shows good agreement with the experimental result, which ensures the competent implementation of the present NSM-steel and CFRP technique.
  5. Hosen MA, Althoey F, Jumaat MZ, Alengaram UJ, Sulong NHR
    Materials (Basel), 2021 May 25;14(11).
    PMID: 34070373 DOI: 10.3390/ma14112809
    Reinforced concrete (RC) structures necessitate strengthening for various reasons. These include ageing, deterioration of materials due to environmental effects, trivial initial design and construction, deficiency of maintenance, the advancement of design loads, and functional changes. RC structures strengthening with the carbon fiber reinforced polymer (CFRP) has been used extensively during the last few decades due to their advantages over steel reinforcement. This paper introduces an experimental approach for flexural strengthening of RC beams with Externally-Side Bonded Reinforcement (E-SBR) using CFRP fabrics. The experimental program comprises eight full-scale RC beams tested under a four-point flexural test up to failure. The parameters investigated include the main tensile steel reinforcing ratio and the width of CFRP fabrics. The experimental outcomes show that an increase in the tensile reinforcement ratio and width of the CFRP laminates enhanced the first cracking and ultimate load-bearing capacities of the strengthened beams up to 141 and 174%, respectively, compared to the control beam. The strengthened RC beams exhibited superior energy absorption capacity, stiffness, and ductile response. The comparison of the experimental and predicted values shows that these two are in good agreement.
  6. M KS, Alengaram UJ, Ibrahim S, Vello V, Phang SM
    Environ Sci Pollut Res Int, 2024 Apr;31(17):25538-25558.
    PMID: 38478311 DOI: 10.1007/s11356-024-32784-2
    This study investigated the potential use of microalgae as partial cement replacement to heal cracks in cement mortar. Microbially induced calcite (CaCO3) precipitation (MICP) from Arthrospira platensis (A. platensis) (UMACC162) was utilised for crack-healing applications. Microalgae was cultivated in Kosaric Media (KM) together with filtered cement water (FCW), and used as a cement replacement material. The microalgal species was further evaluated for its capacity and adaptability towards large-scale culturing. The results showed that A. platensis could adapt and survive in cement water solution and cement mortar, suggesting the potential for self-healing in cement mortar. Further, the cultured species grown in both conditions (KM and KM & FCW) were harvested and incorporated into the cement mortar as a partial cement replacement material at different levels of 5%, 10%, 20%, and 30% of cement weight. The cement mortars partially replaced with microalgae were cured in water for 28 days. Pre-cracks were induced in the cured mortar with the 75% of their ultimate load. It took just 14 days for the microalgae-incorporated mortar to heal the cracks. The specimens with microalgae cultured in FCW showed a better performance and recovered 59% of their strength, with a maximum healed crack width of 0.7 mm. In terms of water tightness and porosity, they are comparable to the control mortar. The compressive strength measurements indicated the formation of calcite aggregate (crystal) that sealed the surface cracks, which was confirmed by a microstructural analysis. The results also demonstrate that the incorporation of microalgae into cement produced a self-healing effect, providing a new direction for crack healing. Additionally, the investigation indicated that replacing cement with microalgae reduced CO2 emissions by as much as 30%, with a substitution of 30% of microalgae. Exploring microalgae as a cement replacement could reduce carbon emissions and improve the state of the environment.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links