OBJECTIVES: Laboratory criteria and patient dataset are compulsory in constructing a new framework. Prioritisation is a popular topic and a complex issue for patients with COVID-19, especially for asymptomatic carriers due to multi-laboratory criteria, criterion importance and trade-off amongst these criteria. This study presents new integrated decision-making framework that handles the prioritisation of patients with COVID-19 and can detect the health conditions of asymptomatic carriers.
METHODS: The methodology includes four phases. Firstly, eight important laboratory criteria are chosen using two feature selection approaches. Real and simulation datasets from various medical perspectives are integrated to produce a new dataset involving 56 patients with different health conditions and can be used to check asymptomatic cases that can be detected within the prioritisation configuration. The first phase aims to develop a new decision matrix depending on the intersection between 'multi-laboratory criteria' and 'COVID-19 patient list'. In the second phase, entropy is utilised to set the objective weight, and TOPSIS is adapted to prioritise patients in the third phase. Finally, objective validation is performed.
RESULTS: The patients are prioritised based on the selected criteria in descending order of health situation starting from the worst to the best. The proposed framework can discriminate among mild, serious and critical conditions and put patients in a queue while considering asymptomatic carriers. Validation findings revealed that the patients are classified into four equal groups and showed significant differences in their scores, indicating the validity of ranking.
CONCLUSIONS: This study implies and discusses the numerous benefits of the suggested framework in detecting/recognising the health condition of patients prior to discharge, supporting the hospitalisation characteristics, managing patient care and optimising clinical prediction rule.
OBJECTIVE: This paper proposes a novel technique for reorganisation of opinion order to interval levels (TROOIL) to prioritise the patients with MCDs in real-time remote health-monitoring system.
METHODS: The proposed TROOIL technique comprises six steps for prioritisation of patients with MCDs: (1) conversion of actual data into intervals; (2) rule generation; (3) rule ordering; (4) expert rule validation; (5) data reorganisation; and (6) criteria weighting and ranking alternatives within each rule. The secondary dataset of 500 patients from the most relevant study in a remote prioritisation area was adopted. The dataset contains three diseases, namely, chronic heart disease, high blood pressure (BP) and low BP.
RESULTS: The proposed TROOIL is an effective technique for prioritising patients with MCDs. In the objective validation, remarkable differences were recognised among the groups' scores, indicating identical ranking results. In the evaluation of issues within all scenarios, the proposed framework has an advantage of 22.95% over the benchmark framework.
DISCUSSION: Patients with the most severe MCD were treated first on the basis of their highest priority levels. The treatment for patients with less severe cases was delayed more than that for other patients.
CONCLUSIONS: The proposed TROOIL technique can deal with multiple DM problems in prioritisation of patients with MCDs.