Displaying all 5 publications

Abstract:
Sort:
  1. Albahri AS, Albahri OS, Zaidan AA, Alnoor A, Alsattar HA, Mohammed R, et al.
    Comput Stand Interfaces, 2022 Mar;80:103572.
    PMID: 34456503 DOI: 10.1016/j.csi.2021.103572
    Owing to the limitations of Pythagorean fuzzy and intuitionistic fuzzy sets, scientists have developed a distinct and successive fuzzy set called the q-rung orthopair fuzzy set (q-ROFS), which eliminates restrictions encountered by decision-makers in multicriteria decision making (MCDM) methods and facilitates the representation of complex uncertain information in real-world circumstances. Given its advantages and flexibility, this study has extended two considerable MCDM methods the fuzzy-weighted zero-inconsistency (FWZIC) method and fuzzy decision by opinion score method (FDOSM) under the fuzzy environment of q-ROFS. The extensions were called q-rung orthopair fuzzy-weighted zero-inconsistency (q-ROFWZIC) method and q-rung orthopair fuzzy decision by opinion score method (q-ROFDOSM). The methodology formulated had two phases. The first phase 'development' presented the sequential steps of each method thoroughly.The q-ROFWZIC method was formulated and used in determining the weights of evaluation criteria and then integrated into the q-ROFDOSM for the prioritisation of alternatives on the basis of the weighted criteria. In the second phase, a case study regarding the MCDM problem of coronavirus disease 2019 (COVID-19) vaccine distribution was performed. The purpose was to provide fair allocation of COVID-19 vaccine doses. A decision matrix based on an intersection of 'recipients list' and 'COVID-19 distribution criteria' was adopted. The proposed methods were evaluated according to systematic ranking assessment and sensitivity analysis, which revealed that the ranking was subject to a systematic ranking that is supported by high correlation results over different scenarios with variations in the weights of criteria.
  2. Alsalem MA, Alsattar HA, Albahri AS, Mohammed RT, Albahri OS, Zaidan AA, et al.
    J Infect Public Health, 2021 Oct;14(10):1513-1559.
    PMID: 34538731 DOI: 10.1016/j.jiph.2021.08.026
    The problem complexity of multi-criteria decision-making (MCDM) has been raised in the distribution of coronavirus disease 2019 (COVID-19) vaccines, which required solid and robust MCDM methods. Compared with other MCDM methods, the fuzzy-weighted zero-inconsistency (FWZIC) method and fuzzy decision by opinion score method (FDOSM) have demonstrated their solidity in solving different MCDM challenges. However, the fuzzy sets used in these methods have neglected the refusal concept and limited the restrictions on their constants. To end this, considering the advantage of the T-spherical fuzzy sets (T-SFSs) in handling the uncertainty in the data and obtaining information with more degree of freedom, this study has extended FWZIC and FDOSM methods into the T-SFSs environment (called T-SFWZIC and T-SFDOSM) to be used in the distribution of COVID-19 vaccines. The methodology was formulated on the basis of decision matrix adoption and development phases. The first phase described the adopted decision matrix used in the COVID-19 vaccine distribution. The second phase presented the sequential formulation steps of T-SFWZIC used for weighting the distribution criteria followed by T-SFDOSM utilised for prioritising the vaccine recipients. Results revealed the following: (1) T-SFWZIC effectively weighted the vaccine distribution criteria based on several parameters including T = 2, T = 4, T = 6, T = 8, and T = 10. Amongst all parameters, the age criterion received the highest weight, whereas the geographic locations severity criterion has the lowest weight. (2) According to the T parameters, a considerable variance has occurred on the vaccine recipient orders, indicating that the existence of T values affected the vaccine distribution. (3) In the individual context of T-SFDOSM, no unique prioritisation was observed based on the obtained opinions of each expert. (4) The group context of T-SFDOSM used in the prioritisation of vaccine recipients was considered the final distribution result as it unified the differences found in an individual context. The evaluation was performed based on systematic ranking assessment and sensitivity analysis. This evaluation showed that the prioritisation results based on each T parameter were subject to a systematic ranking that is supported by high correlation results over all discussed scenarios of changing criteria weights values.
  3. Alsalem MA, Mohammed R, Albahri OS, Zaidan AA, Alamoodi AH, Dawood K, et al.
    Int J Intell Syst, 2022 Jun;37(6):3514-3624.
    PMID: 38607836 DOI: 10.1002/int.22699
    Considering the coronavirus disease 2019 (COVID-19) pandemic, the government and health sectors are incapable of making fast and reliable decisions, particularly given the various effects of decisions on different contexts or countries across multiple sectors. Therefore, leaders often seek decision support approaches to assist them in such scenarios. The most common decision support approach used in this regard is multiattribute decision-making (MADM). MADM can assist in enforcing the most ideal decision in the best way possible when fed with the appropriate evaluation criteria and aspects. MADM also has been of great aid to practitioners during the COVID-19 pandemic. Moreover, MADM shows resilience in mitigating consequences in health sectors and other fields. Therefore, this study aims to analyse the rise of MADM techniques in combating COVID-19 by presenting a systematic literature review of the state-of-the-art COVID-19 applications. Articles on related topics were searched in four major databases, namely, Web of Science, IEEE Xplore, ScienceDirect, and Scopus, from the beginning of the pandemic in 2019 to April 2021. Articles were selected on the basis of the inclusion and exclusion criteria for the identified systematic review protocol, and a total of 51 articles were obtained after screening and filtering. All these articles were formed into a coherent taxonomy to describe the corresponding current standpoints in the literature. This taxonomy was drawn on the basis of four major categories, namely, medical (n = 30), social (n = 4), economic (n = 13) and technological (n = 4). Deep analysis for each category was performed in terms of several aspects, including issues and challenges encountered, contributions, data set, evaluation criteria, MADM techniques, evaluation and validation and bibliography analysis. This study emphasised the current standpoint and opportunities for MADM in the midst of the COVID-19 pandemic and promoted additional efforts towards understanding and providing new potential future directions to fulfil the needs of this study field.
  4. Albahri OS, Zaidan AA, Albahri AS, Alsattar HA, Mohammed R, Aickelin U, et al.
    J Adv Res, 2022 Mar;37:147-168.
    PMID: 35475277 DOI: 10.1016/j.jare.2021.08.009
    INTRODUCTION: The vaccine distribution for the COVID-19 is a multicriteria decision-making (MCDM) problem based on three issues, namely, identification of different distribution criteria, importance criteria and data variation. Thus, the Pythagorean fuzzy decision by opinion score method (PFDOSM) for prioritising vaccine recipients is the correct approach because it utilises the most powerful MCDM ranking method. However, PFDOSM weighs the criteria values of each alternative implicitly, which is limited to explicitly weighting each criterion. In view of solving this theoretical issue, the fuzzy-weighted zero-inconsistency (FWZIC) can be used as a powerful weighting MCDM method to provide explicit weights for a criteria set with zero inconstancy. However, FWZIC is based on the triangular fuzzy number that is limited in solving the vagueness related to the aforementioned theoretical issues.

    OBJECTIVES: This research presents a novel homogeneous Pythagorean fuzzy framework for distributing the COVID-19 vaccine dose by integrating a new formulation of the PFWZIC and PFDOSM methods.

    METHODS: The methodology is divided into two phases. Firstly, an augmented dataset was generated that included 300 recipients based on five COVID-19 vaccine distribution criteria (i.e., vaccine recipient memberships, chronic disease conditions, age, geographic location severity and disabilities). Then, a decision matrix was constructed on the basis of an intersection of the 'recipients list' and 'COVID-19 distribution criteria'. Then, the MCDM methods were integrated. An extended PFWZIC was developed, followed by the development of PFDOSM.

    RESULTS: (1) PFWZIC effectively weighted the vaccine distribution criteria. (2) The PFDOSM-based group prioritisation was considered in the final distribution result. (3) The prioritisation ranks of the vaccine recipients were subject to a systematic ranking that is supported by high correlation results over nine scenarios of the changing criteria weights values.

    CONCLUSION: The findings of this study are expected to ensuring equitable protection against COVID-19 and thus help accelerate vaccine progress worldwide.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links