METHODS: Apoptotic induction of the extracts was determined by morphological examination of AO/PI dual staining assay by flourescent microscopy and flow cytometry analysis on Annexin V-FITC/PI stained cells. In vivo study was done in immune-compromised mouse xenograft model. HPLC analysis was employed to quantify marker compounds.
RESULTS: Morphological analysis showed L. pumila induced apoptosis in a dose dependent manner against SK-UT-1 cells. In vivo study indicated that L. pumila significantly suppressed the growth of uterine fibroid tumor. All tested extracts contain bioactive marker of gallic acid and cafeic acid.
CONCLUSION: This work provide significant data of the potential of L. pumila in management of uterine fibroids.
.
METHODS: Pharmacokinetics of KKA was studied after intravenous and oral administration in SD rats using HPLC. Anti-angiogenic efficacy of KKA was investigated in rat aorta, human endothelial cells (EA.hy926) and nude mice implanted with matrigel.
RESULTS: Pharmacokinetic study revealed that KKA was readily absorbed into blood and stayed for a long time in the body with Tmax 2.89 ± 0.12 h, Cmax 7.24 ± 0.36 μg/mL and T1/2 1.46 ± 0.03 h. The pharmacological results showed that KKA significantly suppressed sprouting of microvessels in rat aorta with IC50 18.4 ± 4.2 μM and demonstrated remarkable inhibition of major endothelial functions such as migration, differentiation and VEGF expression in endothelial cells. Further, KKA significantly inhibited vascularization in matrigel plugs implanted in nude mice.
CONCLUSIONS: The results indicate that bioabsorption of KKA from oral route was considerably efficient with longer retention in body than compared to that of the intravenous route. Further, improved antiangiogenic activity of KKA was recorded which could probably be due to its increased solubility and bioavailability. The results revealed that KKA inhibits angiogenesis by suppressing endothelial functions and expression of VEGF.
EXPERIMENTAL APPROACH: KKA was produced by a semi-synthetic method. A human apoptosis proteome profiler array was applied to determine the protein targets responsible for the stimulation of apoptosis. Three doses of KKA were studied in athymic nude mice models to examine the in vivo anti-tumorigenic ability of KKA.
FINDINGS/RESULTS: The results of this study demonstrated that KKA regulates the activities of various proteins. It downregulates the expression of several antiapoptotic proteins and negative regulators of apoptosis including HSP60, HSP90, Bcl-2, and IGF-1 in HCT 116 cells with consequent upregulation of TRAILR-1 and TRAILR-2, p27, CD40, caspase 3, and caspase 8 proteins. Additionally, KKA showed an in vitro antimetastatic effect against HCT 116 cells. These results are feasibly related to the down-regulation of Notch, Wnt, hypoxia, and MAPK/JNK and MAPK/ERK signalling pathways in HCT 116 cells besides the up-regulation of a transcription factor for cell cycle (pRb-E2F) pathways. In addition, KKA revealed potent inhibition of tumor growth.
CONCLUSION AND IMPLICATIONS: In sum, the findings indicate that KKA can be a promising candidate as a chemotherapeutic agent against colorectal cancer.
METHODS: This multicenter randomized double-blind placebo-controlled phase 2 trial included 110 solid malignant tumor patients (stage II-IV) undergoing chemotherapy. They were randomly selected and provided oral Nuvastatic™ 1000 mg (N = 56) or placebo (N = 54) thrice daily for 9 weeks. The primary outcomes were fatigue (Brief Fatigue Inventory (BFI)) and Visual Analog Scale for Fatigue (VAS-F)) scores measured before and after intervention at baseline and weeks 3, 6, and 9. The secondary outcomes were mean group difference in the vitality subscale of the Medical Outcome Scale Short Form-36 (SF-36) and urinary F2-isoprostane concentration (an oxidative stress biomarker), Eastern Cooperative Oncology Group scores, adverse events, and biochemical and hematologic parameters. Analysis was performed by intention-to-treat (ITT). Primary and secondary outcomes were assessed by two-way repeated-measures analysis of variance (mixed ANOVA).
RESULTS: The Nuvastatic™ group exhibited an overall decreased fatigue score compared with the placebo group. Compared with the placebo group, the Nuvastatic™ group significantly reduced BFI-fatigue (BFI fatigue score, F (1.4, 147) = 16.554, p