Displaying all 2 publications

Abstract:
Sort:
  1. Ismail W, Al-Hadi IAA, Grosan C, Hendradi R
    PeerJ Comput Sci, 2021;7:e599.
    PMID: 34322590 DOI: 10.7717/peerj-cs.599
    Background: Virtual reality is utilised in exergames to help patients with disabilities improve on the movement of their limbs. Exergame settings, such as the game difficulty, play important roles in the rehabilitation outcome. Similarly, suboptimal exergames' settings may adversely affect the accuracy of the results obtained. As such, the improvement in patients' movement performances falls below the desired expectations. In this paper, a recommender system is incorporated to suggest the most preferred movement setting for each patient, based on the movement history of the patient.

    Method: The proposed recommender system (ResComS) suggests the most suitable setting necessary to optimally improve patients' rehabilitation performances. In the course of developing the recommender system, three methods are proposed and compared: ReComS (K-nearest neighbours and collaborative filtering algorithms), ReComS+ (k-means, K-nearest neighbours, and collaborative filtering algorithms) and ReComS++ (bacterial foraging optimisation, k-means, K-nearest neighbours, and collaborative filtering algorithms). The experimental datasets are collected using the Medical Interactive Recovery Assistant (MIRA) software platform.

    Result: Experimental results, validated by the patients' exergame performances, reveal that the ReComS++ approach predicts the best exergame settings for patients with 85.76% accuracy.

  2. Al-Hadi IAA, Sharef NM, Sulaiman MN, Mustapha N, Nilashi M
    PeerJ Comput Sci, 2020;6:e331.
    PMID: 33816980 DOI: 10.7717/peerj-cs.331
    Recommendation systems suggest peculiar products to customers based on their past ratings, preferences, and interests. These systems typically utilize collaborative filtering (CF) to analyze customers' ratings for products within the rating matrix. CF suffers from the sparsity problem because a large number of rating grades are not accurately determined. Various prediction approaches have been used to solve this problem by learning its latent and temporal factors. A few other challenges such as latent feedback learning, customers' drifting interests, overfitting, and the popularity decay of products over time have also been addressed. Existing works have typically deployed either short or long temporal representation for addressing the recommendation system issues. Although each effort improves on the accuracy of its respective benchmark, an integrative solution that could address all the problems without trading off its accuracy is needed. Thus, this paper presents a Latent-based Temporal Optimization (LTO) approach to improve the prediction accuracy of CF by learning the past attitudes of users and their interests over time. Experimental results show that the LTO approach efficiently improves the prediction accuracy of CF compared to the benchmark schemes.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links