Displaying all 2 publications

Abstract:
Sort:
  1. Al-Ghaili, Abbas M., Syamsiah Mashohor, Abdul Rahman Ramli, Alyani Ismail
    MyJurnal
    Recently, license plate detection has been used in many applications especially in transportation systems. Many methods have been proposed in order to detect license plates, but most of them work under restricted conditions such as fixed illumination, stationary background, and high resolution images. License plate detection plays an important role in car license plate recognition systems because it affects the accuracy and processing time of the system. This work aims to build a Car License Plate Detection (CLPD) system at a lower cost of its hardware devices and with less complexity of algorithms’ design, and then compare its performance with the local CAR Plate Extraction Technology (CARPET). As Malaysian plates have special design and they differ from other international plates, this work tries to compare two likely-design methods. The images are taken using a web camera for both the systems. One of the most important contributions in this paper is that the proposed CLPD method uses Vertical Edge Detection Algorithm (VEDA) to extract the vertical edges of plates. The proposed CLPD method can work to detect the region of car license plates. The method shows the total time of processing one 352x288 image is 47.7 ms, and it meets the requirement of real time processing. Under the experiment datasets, which were taken from real scenes, 579 out of 643 images were successfully detected. Meanwhile, the average accuracy of locating car license plate was 90%. In this work, a comparison between CARPET and the proposed CLPD method for the same tested images was done in terms of detection rate and efficiency. The results indicated that the detection rate was 92% and 84% for the CLPD method and CARPET, respectively. The results also showed that the CLPD method could work using dark images to detect license plates, whereas CARPET had failed to do so.
  2. Al-Hada NM, Md Kasmani R, Kasim H, Al-Ghaili AM, Saleh MA, Banoqitah EM, et al.
    Nanomaterials (Basel), 2021 Aug 22;11(8).
    PMID: 34443973 DOI: 10.3390/nano11082143
    In the present work, a thermal treatment technique is applied for the synthesis of CexSn1-xO2 nanoparticles. Using this method has developed understanding of how lower and higher precursor values affect the morphology, structure, and optical properties of CexSn1-xO2 nanoparticles. CexSn1-xO2 nanoparticle synthesis involves a reaction between cerium and tin sources, namely, cerium nitrate hexahydrate and tin (II) chloride dihydrate, respectively, and the capping agent, polyvinylpyrrolidone (PVP). The findings indicate that lower x values yield smaller particle size with a higher energy band gap, while higher x values yield a larger particle size with a smaller energy band gap. Thus, products with lower x values may be suitable for antibacterial activity applications as smaller particles can diffuse through the cell wall faster, while products with higher x values may be suitable for solar cell energy applications as more electrons can be generated at larger particle sizes. The synthesized samples were profiled via a number of methods, such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR). As revealed by the XRD pattern analysis, the CexSn1-xO2 nanoparticles formed after calcination reflect the cubic fluorite structure and cassiterite-type tetragonal structure of CexSn1-xO2 nanoparticles. Meanwhile, using FT-IR analysis, Ce-O and Sn-O were confirmed as the primary bonds of ready CexSn1-xO2 nanoparticle samples, whilst TEM analysis highlighted that the average particle size was in the range 6-21 nm as the precursor concentration (Ce(NO3)3·6H2O) increased from 0.00 to 1.00. Moreover, the diffuse UV-visible reflectance spectra used to determine the optical band gap based on the Kubelka-Munk equation showed that an increase in x value has caused a decrease in the energy band gap and vice versa.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links