Displaying all 2 publications

Abstract:
Sort:
  1. Dayaghi E, Bakhsheshi-Rad HR, Hamzah E, Akhavan-Farid A, Ismail AF, Aziz M, et al.
    Mater Sci Eng C Mater Biol Appl, 2019 Sep;102:53-65.
    PMID: 31147024 DOI: 10.1016/j.msec.2019.04.010
    Recently, porous magnesium and its alloys are receiving great consideration as biocompatible and biodegradable scaffolds for bone tissue engineering application. However, they presented poor antibacterial performance and corrosion resistance which limited their clinical applications. In this study, Mg-Zn (MZ) scaffold containing different concentrations of tetracycline (MZ-xTC, x = 1, 5 and 10%) were fabricated by space holder technique to meet the desirable antibacterial activity and corrosion resistance properties. The MZ-TC contains total porosity of 63-65% with pore sizes in the range of 600-800 μm in order to accommodate bone cells. The MZ scaffold presented higher compressive strength and corrosion resistance compared to pure Mg scaffold. However, tetracycline incorporation has less significant effect on the mechanical and corrosion properties of the scaffolds. Moreover, MZ-xTC scaffolds drug release profiles show an initial immediate release which is followed by more stable release patterns. The bioactivity test reveals that the MZ-xTC scaffolds are capable of developing the formation of HA layers in simulated body fluid (SBF). Next, Staphylococcus aureus and Escherichia coli bacteria were utilized to assess the antimicrobial activity of the MZ-xTC scaffolds. The findings indicate that those scaffolds that incorporate a high level concentration of tetracycline are tougher against bacterial organization than MZ scaffolds. However, the MTT assay demonstrates that the MZ scaffolds containing 1 to 5% tetracycline are more effective to sustain cell viability, whereas MZ-10TC shows some toxicity. The alkaline phosphatase (ALP) activity of the MZ-(1-5)TC was considerably higher than that of MZ-10TC on the 3 and 7 days, implying higher osteoblastic differentiation. All the findings suggest that the MZ-xTC scaffolds containing 1 to 5% tetracycline is a promising candidate for bone tissue healing due to excellent antibacterial activity and biocompatibility.
  2. Tan PS, Akhavan Farid A, Karimzadeh A, Rahimian Koloor SS, Petrů M
    Materials (Basel), 2020 Sep 21;13(18).
    PMID: 32967330 DOI: 10.3390/ma13184199
    The curvature correction factor is an important parameter in the stress calculation formulation of a helical extension spring, which describes the effect of spring wire curvature on the stress increase towards its inner radius. In this study, the parameters affecting the curvature correction factor were investigated through theoretical and numerical methods. Several finite element (FE) models of an extension spring were generated to obtain the distribution of the tensile stress in the spring. In this investigation, the hook orientation and the number of coils of the extension spring showed significant effects on the curvature correction factor. These parameters were not considered in the theoretical model for the calculation of the curvature correction factor, causing a deviation between the results of the FE model and the theoretical approach. A set of equations is proposed for the curvature correction factor, which relates both the spring index and the number of coils. These equations can be applied directly to the design of extension springs with a higher safety factor.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links