Gemcitabine (GEM) is used to treat various cancers such as breast, pancreatic, non-small lung, ovarian, bladder, and cervical cancers. GEM, however, has the problem of non-selectivity. Water-soluble, fluorescent, and mono-dispersed carbon dots (CDs) were fabricated by ultrasonication of sucrose. The CDs were further conjugated with GEM through amide linkage. The physical and morphological properties of these carbon dot-gemcitabine (CD-GEM) conjugates were determined using different analytical techniques. In vitro cytotoxicity and apoptosis studies of CD-GEM conjugates were evaluated by various bioactivity assays on human cell lines, MCF-7 (human breast adenocarcinoma), and HeLa (cervical cancer) cell lines. The results of kinetic studies have shown a maximum drug loading efficacy of 17.0 mg of GEM per 50.0 mg of CDs. The CDs were found biocompatible, and the CD-GEM conjugates exhibited excellent bioactivity and exerted potent cytotoxicity against tumor cells with an IC50 value of 19.50 μg ml-1 in HeLa cells, which is lower than the IC50 value of pure GEM (∼20.10 μg ml-1). In vitro studies on CD-GEM conjugates demonstrated the potential to replace the conventional administration of GEM. CD-GEM conjugates are more stable, have a higher aqueous solubility, and are more cytotoxic as compared to GEM alone. The CD-GEM conjugates show reduced side effects in the normal cells along with excellent cellular uptake. Hence, CD-GEM conjugates are more selective toward cancerous cell lines as compared to non-cancerous cells. Also, the CD-GEM conjugates successfully induced early and late apoptosis in cancer cell lines and might be effective and safe to use for in vivo applications.
Cancer is the leading cause of death worldwide. Capecitabine (CP) shows severe side effects because of early metabolism in stomach that affects the normal cells and organs, particularly liver and stomach. In this scope, we report the biocompatible, nontoxic polymeric thin films loaded with anti-cancer drug, CP for target specific, sublingual delivery of CP. Chitosan (CS) and polyvinyl alcohol (PVA) were used as biodegradable polymers alongwith glutaraldehyde (GLA) cross linker. CP-loaded thin films (TFCP1-TFCP5) were fabricated by solvent casting method. The results of Fourier transform infrared spectroscopy confirmed the presence of CP and polymers (CS and PVA) with GLA which binds through hydrogen bonding, and compatibility of drug with different excipients. Thermogravemetric analysis showed that the thin films are highly stable while differential scanning calorimeter thermograms confirmed the complete miscibility/entrapment of CP within PVA/CS thin film matrix. X-ray diffraction patterns revealed the molecular ineractions between CP and polymer matrix. High degree of swelling index of thin films at pH 7.4 was observed in comparison to pH 5.5. CP release studies in acetate (pH 5.5) and phosphate buffer (pH 7.4) showed that the thin films swell and result in drug diffusion faster in phosphate buffer through diffusion governed by Higuchi's model. Cytotoxicity results displayed that CPTFs killed MCF-7 and T47D (human breast adenocarcinoma) cells more effectively as compared to CP alone. The results of adhesion assay also showed that the PVA and CS both are safe and biocompatible. TFCP1 and TFCP3 thin films efficiently induced the apoptosis as compared to CP alone. The improved ability of TFCP1 and TFCP3 to induce cytotoxicity in MCF-7 cells reflects the potential of these thin films for targeted drug delivery. The CPTFs were stable for 4 months at 4 °C/60% ± 2%RH and 25 °C/70% ± 2%RH. In conclusion, the thin film formulations showed target specific controlled and burst release properties and thus could prove to be effective for human breast cancer treatment.
The increasing use of road traffic for land transportation has resulted in numerous road accidents and casualties, including those involving oil and gas tanker vehicles. Despite this, little empirical research has been conducted on the factors influencing tanker drivers' performance. This study aims to address this knowledge gap, particularly in the energy transportation industry, by examining the driving performance factors that affect tanker drivers and incorporating risk assessment measures. The model variables were identified from the literature and used to develop a survey questionnaire for the study. A total of 307 surveys were collected from Malaysian oil and gas tanker drivers, and the driving performance factors were contextually adjusted using the Exploratory Factor Analysis (EFA) approach. The driving performance model was developed using partial least squares structural equation modeling (PLS-SEM). The EFA results categorized driving performance into two constructs: 1) drivers' reaction time with β = 0.320 and 2) attention and vigilance with β value = 0.749. The proposed model provided full insight into how drivers' reaction time, attention, and vigilance impact drivers' performance in this sector, which can help identify potential risks and prevent accidents. The findings are significant in understanding the factors that affect oil and gas drivers' performance and can aid in enhancing oil and gas transportation management by including effective risk assessment measures to prevent fatal crashes.
Agronomic crops can benefit from the application of nanoscale materials in order to control phytopathogens and improve plant growth. Bipolaris sorokiniana, a soil- and seed-borne fungus, causes severe yield losses in wheat. In order to determine the physio-chemical changes in wheat under biotic stress of B. sorokiniana, the current study aimed to synthesis silver nanoparticles (AgNPs) using Allium sativum bulb extract. Herein, we applied the silver nanoparticles (AgNPs) as a foliar spray on two wheat varieties (Pakistan-2013, and NARC-2011) at the concentrations of 10, 20, 30, and 40 mg/L to suppress B. sorokiniana. Among all the applied concentrations of AgNPs, the 40 mg/L concentration demonstrated the most effective outcome in reduction of the intensity of spot blotch and improved the morphological, physiological, biochemical parameters, as well as antioxidant activity in wheat plant. Foliar application of AgNPs at 40 mg/L Pakistan-2013 and NARC-2011 wheat varieties significantly increased chlorophyll a 84.8% and 53.4%, chlorophyll b 28.9% and 84.3%, total chlorophyll content 294.3% and 241.2%, membrane stability index 7.5% and 6.1%, relative water contents 25.4% and 10.5%, proline content 320.5% and 609.9%, and soluble sugar content 120% and 259.4%, respectively, compared to control and diseased plant. This is the first study provides important insights into the role of phyto-mediated AgNPs in increasing resistant of wheat infected with B. sorokiniana. These findings offers valuable new insights that may be useful for reducing disease incidence in wheat fields.