Methods: Forty participants were recruited for the study (20 with asymptomatic pronated feet and 20 with non-pronated feet). Foot assessment was conducted by navicular drop and rear-foot angle tests. Hip joint kinematics were measured via MVN Xsens system 3D-motion capture from sagittal, frontal and transverse planes during gait. An independent t-test was used to identify differences in kinematic variables.
Results: Both groups were similar in characteristics, and there were no significant differences between the groups in age (P = 0.674) and BMI (P = 0.459). However, there was a significant difference in arch height (P = 0.001) and rear-foot angle (P = 0.001). Our findings showed there were insignificant differences between the asymptomatic pronated foot and non-pronated foot control groups in hip joint kinematics of sagittal (P = 0.618), frontal (P = 0.276), and transverse (P = 0.337) planes during a full gait cycle.
Conclusion: Patients with asymptomatic pronation of the foot and non-pronation of the foot showed similar movement patterns of hip kinematics in all three planes. The findings of the present study highlight the need for clinicians to consider foot alignment when examining patients with asymptomatic pronation of the foot and non-pronation of the foot.
Materials and Methods: Twenty gel matrices were prepared with different durations of microwave irradiation, amounts of maize, and concentrations of sodium bicarbonate as suggested by Design Expert (DX®). The percentage drug release, the coefficient of variance (CV) in release, and the mean dissolution time (MDT) were the properties explored in the designed experimentation.
Results: Target responses were dependent on microwave irradiation time, cross-linker amount, and salt concentration. Classical and microwave heating did not demonstrate statistically significant difference in modifying the percentage of drug released from the matrices. However, the CVs of microwave-assisted formulations were lower than those of the gel matrices prepared via classical heating. Thus, microwave heating produced lesser variations in drug release. The optimized gel matrices demonstrated that the observed percentage of drug release, CV, and MDT were within the prediction interval generated by DX®. The release mechanism of the matrix formulations followed the Peppas-Korsmeyer anomalous transport model.
Conclusion: The DoE-supported microwave-assisted approach could be applied to optimize the critical factors of drug release with less variation.