Subsea cable laying process is a difficult task for an engineer due to many
uncertain situations which occur during the operation. It is very often that the cable being
laid out is not perfectly fit on the route being planned, which results in the formation of
slack. In order to control wastages during installation, the slack needs to be minimized
and the movement of a ship/vessel needs to be synchronized with the cable being laid out.
The current problem was addressed using a mathematical model by considering a number
of defining parameters such as the external forces, the cable properties and geometry. Due
to the complexity, the model is developed for a steady-state problem assuming velocity
of the vessel is constant, seabed is flat and the effect of wind and wave is insignificant.
Non-dimensional system is used to scale the engineering parameters and grouped them
into only two main parameters which are the hydrodynamic drag of the fluid and the
bending stiffness of the cable. There are two solutions generated in this article; numerical
and asymptotic solutions. The result of these solutions suggests that the percentage of
slack can be reduced by the increase of the prescribed cable tension, and also the increase
in either the drag coefficient of the sea water or the bending stiffness of the cable, similarly
will result in lower slack percentage
Subsea cable laying is a risky and challenging operation faced by engineers, due to many uncertainties arise during the operation. In order to ensure that subsea cables are laid out diligently, the analysis of subsea cable tension during the laying operation is crucial. This study focuses on the fatigue failure of cables that will cause large hang-off loads based on catenary configuration after laying operation. The presented problem was addressed using mathematical modelling with consideration for a number of defining parameters, which include external forces such as current velocity and design parameters such as cable diameter. There were two types of subsea cable tension analyses studied: tensional analysis of catenary configurations and tensional analysis of lazy wave configurations. The latter involved a buoyancy module that was incorporated in the current catenary configuration that reduced subsea cable tension and enhanced subsea cable lifespan. Both analyses were solved using minimization through the gradient- based approach concerning on the tensional analysis of the subsea cable in different configurations. Lazy wave configurations were shown to successfully reduce cable tension, especially at the hang-off section.