Displaying all 6 publications

Abstract:
Sort:
  1. Nahar L, Jaafar A, Ahamed E, Kaish AB
    Assist Technol, 2015;27(3):172-82.
    PMID: 26427745 DOI: 10.1080/10400435.2015.1011758
    Visually impaired students (VIS) are unable to get visual information, which has made their learning process complicated. This paper discusses the overall situation of VIS in Bangladesh and identifies major challenges that they are facing in getting education. The Braille system is followed to educate blind students in Bangladesh. However, lack of Braille based educational resources and technological solutions have made the learning process lengthy and complicated for VIS. As a developing country, Bangladesh cannot afford for the costly Braille related technological tools for VIS. Therefore, a mobile phone based Braille application, "mBRAILLE", for Android platform is designed to provide an easy Braille learning technology for VIS in Bangladesh. The proposed design is evaluated by experts in assistive technology for students with disabilities, and advanced learners of Braille. The application aims to provide a Bangla and English Braille learning platform for VIS. In this paper, we depict iterative (participatory) design of the application along with a preliminary evaluation with 5 blind subjects, and 1 sighted and 2 blind experts. The results show that the design scored an overall satisfaction level of 4.53 out of 5 by all respondents, indicating that our design is ready for the next step of development.
  2. Rahman MA, Ahamed E, Faruque MRI, Islam MT
    Sci Rep, 2018 Oct 08;8(1):14948.
    PMID: 30297730 DOI: 10.1038/s41598-018-33295-0
    Various techniques are commonly used to produce nano-crystalline NiAl2O4 materials; however, their practical applications in the microwave region remain very limited. In this work, flexible substrates for metamaterials containing two different concentrations of NiAl2O4 (labelled Ni36 and Ni42) have been synthesised using a sol-gel method. The formation of spinel structures in the synthesised materials is confirmed, and their crystalline sizes are determined using scanning electron microscopy, X-ray diffraction, and energy dispersive X-ray techniques. The dielectric properties, conductivities, loss tangents, and other parameters of the NiAl2O4-based substrates are analysed to evaluate their applicability as dielectric materials for the microwave frequency range. The obtained results show that the fabricated Ni36 and Ni42 nickel aluminates possess dielectric constants of 4.94 and 4.97 and loss tangents of 0.01 and 0.007, respectively; in addition, they exhibit high flexibility and light weight, which make them suitable for applications as metamaterial substrates. The synthesised structures are also validated experimentally using a commercially available electromagnetic simulator; as a result, double negative behaviour of the flexible metamaterials has been observed. Furthermore, it is found that the prepared NiAl2O4 substrates can be used in the S-, C-, and X-bands of the microwave frequency region.
  3. Ahamed E, Faruque MRI, Alam MJ, Mansor MFB, Islam MT
    Sci Rep, 2020 Feb 24;10(1):3289.
    PMID: 32094436 DOI: 10.1038/s41598-020-60170-8
    A new approach to controlling the flow of a plasmatic electron packet at the interface between metallic and dielectric layers is described. The proposed metamaterial structure operates in the optical frequency range and can be used as a digital processing filter. It exhibits two double negative resonances and one special passband region, while the existence of a metal-dielectric nano-tunnel enhances electromagnetic wave-metal interactions. The structural arrangement of this metamaterial coupled with the tunnel layer can effectively control the electric field and allows digital encoding of electron packets.
  4. Faruque MRI, Siddiky AM, Ahamed E, Islam MT, Abdullah S
    Sci Rep, 2021 Aug 10;11(1):16247.
    PMID: 34376734 DOI: 10.1038/s41598-021-95468-8
    The electromagnetic properties of the metal based dielectric in the field of millimeter and sub-millimeter technology attracts a new era for innovation. In this research work, we have introduced a parallel LC shaped metamaterial resonator with wider bandwidth. The negative refractive index for two resonant frequencies is located from the negative permittivity from 5.1 to 6.3, 10.4 to 12.9 GHz, where the negative refractive index is located from 5.4 to 6.3 and 10.5 to 13.5 GHz. The electromagnetic wave polarizing in the proposed structure with parallel LC shaped metallic structure shows a fascinating response of wider bandwidth for the external electric and magnetic field. This paper focuses on the design of conducting layer for the suggested design with the parallel metallic arm for analysing the mutual coupling effect of the scattering response where the sub-branch in metallic design is shown more resonant frequencies with the enhancement of the compactness. This proposed structure is analysed with different metallic arrangements and array structures for different boundary conditions.
  5. Ahamed E, Hasan MM, Faruque MRI, Mansor MFB, Abdullah S, Islam MT
    PLoS One, 2018;13(6):e0199150.
    PMID: 29924859 DOI: 10.1371/journal.pone.0199150
    In this paper, we introduce a new compact left-handed tunable metamaterial structure, inspired by a joint T-D shape geometry on a flexible NiAl2O4 substrate. The designed metamaterial exhibits an extra-large negative refractive index bandwidth of 6.34 GHz, with an operating frequency range from 4 to 18 GHz. We demonstrate the effects of substrate material thickness on the effective properties of metamaterial using two substrate materials: 1) flame retardant 4 and 2) flexible nickel aluminate. A finite integration technique based on the Computer Simulation Technology Microwave Studio electromagnetic simulator was used for our design, simulation, and investigation. A finite element method based on an HFSS (High Frequency Structure Simulator) electromagnetic simulator is also used to simulate results, perform verifications, and compare the measured results. The simulated resonance peaks occurred at 6.42 GHz (C-band), 9.32 GHz (X-band), and 16.90 GHz (Ku-band), while the measured resonance peaks occurred at 6.60 GHz (C-band), 9.16 GHz (X-band) and 17.28 GHz (Ku-band). The metamaterial structure exhibited biaxial tunable properties by changing the electromagnetic wave propagation in the y and z directions and the left-handed characteristics at 11.35 GHz and 13.50 GHz.
  6. Alam MJ, Ahamed E, Faruque MRI, Islam MT, Tamim AM
    PLoS One, 2019;14(11):e0224478.
    PMID: 31714917 DOI: 10.1371/journal.pone.0224478
    Interferences and accuracy problem are one of the most talked issues in today's world for sensor technology. To deal with this contention, a microstrip framework consisting of a dual mode double negative (DNG) metamaterial based bandpass filter is presented in this article. To obtain the ultimate noise reduction bandpass filter, the proposed structure has to go through a series of development process, where the characteristics of the structure are tested to the limit. This filter is built on Rogers RT-5880 substrate with a 50Ω microstrip line. To pursue the elementary mode of resonant frequency, the ground layer of the structure is kept partially filled and a gradual analysis is executed on the prospective metamaterial (resonator) unit cell. Depending on the developed unit cell, the filter is constructed and fabricated to verify the concept, concentrating on GPS (1.55GHz), Earth Exploration-Satellite (2.70GHz) and WiMAX (3.60GHz) bands of frequencies. Moreover, the structure is investigated using Nicolson-Ross-Weir (NRW) approach to justify the metamaterial characteristics, and also tested on S-parameters, current distribution, electric and magnetic fields and quality factor. Having a propitious architecture and DNG characteristics, the proposed structure is suitable for bandpass filter for GPS, Earth Exploration-Satellite and WiMAX frequency sensing applications.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links