Displaying all 6 publications

Abstract:
Sort:
  1. Adeshina AM, Hashim R
    Interdiscip Sci, 2017 Mar;9(1):140-152.
    PMID: 26754740 DOI: 10.1007/s12539-015-0140-9
    Diagnostic radiology is a core and integral part of modern medicine, paving ways for the primary care physicians in the disease diagnoses, treatments and therapy managements. Obviously, all recent standard healthcare procedures have immensely benefitted from the contemporary information technology revolutions, apparently revolutionizing those approaches to acquiring, storing and sharing of diagnostic data for efficient and timely diagnosis of diseases. Connected health network was introduced as an alternative to the ageing traditional concept in healthcare system, improving hospital-physician connectivity and clinical collaborations. Undoubtedly, the modern medicinal approach has drastically improved healthcare but at the expense of high computational cost and possible breach of diagnosis privacy. Consequently, a number of cryptographical techniques are recently being applied to clinical applications, but the challenges of not being able to successfully encrypt both the image and the textual data persist. Furthermore, processing time of encryption-decryption of medical datasets, within a considerable lower computational cost without jeopardizing the required security strength of the encryption algorithm, still remains as an outstanding issue. This study proposes a secured radiology-diagnostic data framework for connected health network using high-performance GPU-accelerated Advanced Encryption Standard. The study was evaluated with radiology image datasets consisting of brain MR and CT datasets obtained from the department of Surgery, University of North Carolina, USA, and the Swedish National Infrastructure for Computing. Sample patients' notes from the University of North Carolina, School of medicine at Chapel Hill were also used to evaluate the framework for its strength in encrypting-decrypting textual data in the form of medical report. Significantly, the framework is not only able to accurately encrypt and decrypt medical image datasets, but it also successfully encrypts and decrypts textual data in Microsoft Word document, Microsoft Excel and Portable Document Formats which are the conventional format of documenting medical records. Interestingly, the entire encryption and decryption procedures were achieved at a lower computational cost using regular hardware and software resources without compromising neither the quality of the decrypted data nor the security level of the algorithms.
  2. Adeshina AM, Hashim R
    Interdiscip Sci, 2016 Mar;8(1):53-64.
    PMID: 26260066 DOI: 10.1007/s12539-015-0274-9
    Stroke is a cardiovascular disease with high mortality and long-term disability in the world. Normal functioning of the brain is dependent on the adequate supply of oxygen and nutrients to the brain complex network through the blood vessels. Stroke, occasionally a hemorrhagic stroke, ischemia or other blood vessel dysfunctions can affect patients during a cerebrovascular incident. Structurally, the left and the right carotid arteries, and the right and the left vertebral arteries are responsible for supplying blood to the brain, scalp and the face. However, a number of impairment in the function of the frontal lobes may occur as a result of any decrease in the flow of the blood through one of the internal carotid arteries. Such impairment commonly results in numbness, weakness or paralysis. Recently, the concepts of brain's wiring representation, the connectome, was introduced. However, construction and visualization of such brain network requires tremendous computation. Consequently, previously proposed approaches have been identified with common problems of high memory consumption and slow execution. Furthermore, interactivity in the previously proposed frameworks for brain network is also an outstanding issue. This study proposes an accelerated approach for brain connectomic visualization based on graph theory paradigm using compute unified device architecture, extending the previously proposed SurLens Visualization and computer aided hepatocellular carcinoma frameworks. The accelerated brain structural connectivity framework was evaluated with stripped brain datasets from the Department of Surgery, University of North Carolina, Chapel Hill, USA. Significantly, our proposed framework is able to generate and extract points and edges of datasets, displays nodes and edges in the datasets in form of a network and clearly maps data volume to the corresponding brain surface. Moreover, with the framework, surfaces of the dataset were simultaneously displayed with the nodes and the edges. The framework is very efficient in providing greater interactivity as a way of representing the nodes and the edges intuitively, all achieved at a considerably interactive speed for instantaneous mapping of the datasets' features. Uniquely, the connectomic algorithm performed remarkably fast with normal hardware requirement specifications.
  3. Adeshina AM, Hashim R
    Interdiscip Sci, 2015 Feb 06.
    PMID: 25663112
    Stroke is a cardiovascular disease with high mortality and long-term disability in the world. Normal functioning of the brain is dependent on the adequate supply of oxygen and nutrients to the brain complex network through the blood vessels. Stroke, occasionally a hemorrhagic stroke, ischemia or other blood vessel dysfunctions can affect patients during a cerebrovascular incident. Structurally, the left and the right carotid arteries, and the right and the left vertebral arteries are responsible for supplying blood to the brain, scalp and the face. However, a number of impairment in the function of the frontal lobes may occur as a result of any decrease in the flow of the blood through one of the internal carotid arteries. Such impairment commonly results in numbness, weakness or paralysis. Recently, the concepts of brain's wiring representation, the connectome, was introduced. However, construction and visualization of such brain network requires tremendous computation. Consequently, previously proposed approaches have been identified with common problems of high memory consumption and slow execution. Furthermore, interactivity in the previously proposed frameworks for brain network is also an outstanding issue. This study proposes an accelerated approach for brain connectomic visualization based on graph theory paradigm using Compute Unified Device Architecture (CUDA), extending the previously proposed SurLens Visualization and Computer Aided Hepatocellular Carcinoma (CAHECA) frameworks. The accelerated brain structural connectivity framework was evaluated with stripped brain datasets from the Department of Surgery, University of North Carolina, Chapel Hill, United States. Significantly, our proposed framework is able to generates and extracts points and edges of datasets, displays nodes and edges in the datasets in form of a network and clearly maps data volume to the corresponding brain surface. Moreover, with the framework, surfaces of the dataset were simultaneously displayed with the nodes and the edges. The framework is very efficient in providing greater interactivity as a way of representing the nodes and the edges intuitively, all achieved at a considerably interactive speed for instantaneous mapping of the datasets' features. Uniquely, the connectomic algorithm performed remarkably fast with normal hardware requirement specifications.
  4. Adeshina AM, Hashim R, Khalid NE
    Interdiscip Sci, 2014 Sep;6(3):222-34.
    PMID: 25205500 DOI: 10.1007/s12539-013-0204-7
    Hepatocellular Carcinoma is the most common type of liver cancer having a strong relation with cirrhosis. Undoubtedly, cirrhosis may be caused by the virus infection of hepatitis B (HBV) and hepatitis C (HBC) or through alchoholism. However, even when cirrhosis has not been developed, patients with hepatitis viral infections are still at the risk of liver cancer. Apparently, among the numerous medical imaging techniques, Computed Tomography (CT) is the best in defining liver tumor borders. Unfortunately, these imaging techniques, including the CT procedures, usually rely on an appended application to reconstruct the generated 2-D slices to 3-D model. This may involve high performance computation, may be time-consuming or costly. Moreover, even with the outstanding performances of CT in defining the liver tumor boundaries, contrast between tumor tissues and the surrounding liver parenchyma is too low in CT slices. With such a close proxity in the tumor and the surrounding liver tissues, accurate characterization of liver tumor is a challenge. Previously, algorithms were developed to reveal abnormalities in brain's MRI datasets and CT abdominal pelvic, however, introducing a framework that could accurately characterize liver tumor and its surrounding tissues in CT datasets would go a long way in contributing to medical diagnosis and therapy planning of Hepatocellular Carcinoma. This paper proposes an Hepatocellular Carcinoma framework by extending the functionalities of SurLens Visualization System with an automatic liver tumor localization technique using Compute Unified Device Architecture (CUDA). The study was evaluated with liver CT datasets from the Imaging Science and Information Systems (ISIS) Center, the Georgetown University Medical Center. Significantly, visualization of liver CT datasets and the localization of the entangled tumor was achieved without prior datasets segmentation. Interestingly, the framework achieved remarkably good processing speed at a reasonably cheaper cost with an immediate reconstruction of the datasets and mapping of the tumor tissues within the surrounding liver parenchyma.
  5. Adeshina AM, Hashim R, Khalid NE, Abidin SZ
    Interdiscip Sci, 2013 Mar;5(1):23-36.
    PMID: 23605637 DOI: 10.1007/s12539-013-0155-z
    In the medical diagnosis and treatment planning, radiologists and surgeons rely heavily on the slices produced by medical imaging devices. Unfortunately, these image scanners could only present the 3-D human anatomical structure in 2-D. Traditionally, this requires medical professional concerned to study and analyze the 2-D images based on their expert experience. This is tedious, time consuming and prone to error; expecially when certain features are occluding the desired region of interest. Reconstruction procedures was earlier proposed to handle such situation. However, 3-D reconstruction system requires high performance computation and longer processing time. Integrating efficient reconstruction system into clinical procedures involves high resulting cost. Previously, brain's blood vessels reconstruction with MRA was achieved using SurLens Visualization System. However, adapting such system to other image modalities, applicable to the entire human anatomical structures, would be a meaningful contribution towards achieving a resourceful system for medical diagnosis and disease therapy. This paper attempts to adapt SurLens to possible visualisation of abnormalities in human anatomical structures using CT and MR images. The study was evaluated with brain MR images from the department of Surgery, University of North Carolina, United States and CT abdominal pelvic, from the Swedish National Infrastructure for Computing. The MR images contain around 109 datasets each of T1-FLASH, T2-Weighted, DTI and T1-MPRAGE. Significantly, visualization of human anatomical structure was achieved without prior segmentation. SurLens was adapted to visualize and display abnormalities, such as an indication of walderstrom's macroglobulinemia, stroke and penetrating brain injury in the human brain using Magentic Resonance (MR) images. Moreover, possible abnormalities in abdominal pelvic was also visualized using Computed Tomography (CT) slices. The study shows SurLens' functionality as a 3-D Multimodal Visualization System.
  6. Adeshina AM, Hashim R, Khalid NE, Abidin SZ
    Interdiscip Sci, 2012 Sep;4(3):161-72.
    PMID: 23292689 DOI: 10.1007/s12539-012-0132-y
    CT and MRI scans are widely used in medical diagnosis procedures, but they only produce 2-D images. However, the human anatomical structure, the abnormalities, tumors, tissues and organs are in 3-D. 2-D images from these devices are difficult to interpret because they only show cross-sectional views of the human structure. Consequently, such circumstances require doctors to use their expert experiences in the interpretation of the possible location, size or shape of the abnormalities, even for large datasets of enormous amount of slices. Previously, the concept of reconstructing 2-D images to 3-D was introduced. However, such reconstruction model requires high performance computation, may either be time-consuming or costly. Furthermore, detecting the internal features of human anatomical structure, such as the imaging of the blood vessels, is still an open topic in the computer-aided diagnosis of disorders and pathologies. This paper proposes a volume visualization framework using Compute Unified Device Architecture (CUDA), augmenting the widely proven ray casting technique in terms of superior qualities of images but with slow speed. Considering the rapid development of technology in the medical community, our framework is implemented on Microsoft.NET environment for easy interoperability with other emerging revolutionary tools. The framework was evaluated with brain datasets from the department of Surgery, University of North Carolina, United States, containing around 109 MRA datasets. Uniquely, at a reasonably cheaper cost, our framework achieves immediate reconstruction and obvious mappings of the internal features of human brain, reliable enough for instantaneous locations of possible blockages in the brain blood vessels.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links