Displaying all 9 publications

Abstract:
Sort:
  1. Adebusoye FT, Awuah WA, Swaminathan N, Ghosh S, Wellington J, Abdul-Rahman T, et al.
    Neurosurgery, 2023 Aug 01;93(2):e30-e31.
    PMID: 37192472 DOI: 10.1227/neu.0000000000002527
  2. Awuah WA, Tenkorang PO, Adebusoye FT, Ng JC, Wellington J, Abdul-Rahman T, et al.
    Postgrad Med J, 2023 Dec 21;100(1179):1-3.
    PMID: 37857514 DOI: 10.1093/postmj/qgad100
  3. Swaminathan N, Awuah WA, Bharadwaj HR, Roy S, Ferreira T, Adebusoye FT, et al.
    Health Sci Rep, 2024 May;7(5):e2075.
    PMID: 38690005 DOI: 10.1002/hsr2.2075
    BACKGROUND AND AIMS: Diabetic Foot Ulcers (DFUs) are a significant health concern, particularly in Low- and Middle-Income Countries (LMICs). This review explores key strategies for managing DFUs in LMICs, including integrating podiatry, endocrinology, and wound care services, educating patients, promoting self-care, and preventive measures to reduce amputation rates.

    METHODS: A comprehensive literature review was conducted, focusing on studies conducted in Low and Middle Income Countries to facilitate a qualitative analysis. The review examined the aetiology and risk factors to developing DFUs, clinical presentation, multidisciplinary management and evidence based interventions, challenges to the provision of care and future directions, all pertaining to DFUs in low and middle income countries.

    RESULTS: The aetiology and risk factors contributing to the development of DFUs are complex and multifaceted. Factors such as limited access to health care, inadequate diabetes management, and socioeconomic disparities significantly influence the incidence of DFUs. Clinical presentation varies, with patients often presenting at advanced stages of the disease due to delayed or missed diagnoses. Multidisciplinary management, incorporating podiatry, endocrinology, and wound care services, has exhibited substantial promise in enhancing patient outcomes. Evidence-based interventions, including offloading techniques, wound debridement, and the use of advanced wound dressings, have proven effective in promoting ulcer healing.

    CONCLUSION: The burden of DFUs in LMICs requires comprehensive strategies. Integrating podiatry, endocrinology, and wound care services, along with patient education and self-care practices, is essential for reducing amputations and improving patients' quality of life. Regular follow-up and early detection are vital for effective DFU management, emphasizing the need for ongoing research and investment in LMIC health care infrastructure. Embracing these multidisciplinary, patient-centered approaches can effectively address the challenge of DFUs in LMICs, leading to better patient outcomes and improved quality of life.

  4. Awuah WA, Adebusoye FT, Tenkorang PO, Mehta A, Mustapha MJ, Debrah AF, et al.
    Int J Surg, 2023 Mar 01;109(3):227-229.
    PMID: 36906787 DOI: 10.1097/JS9.0000000000000020
  5. Awuah WA, Ahluwalia A, Ghosh S, Roy S, Tan JK, Adebusoye FT, et al.
    Eur J Med Res, 2023 Nov 16;28(1):529.
    PMID: 37974227 DOI: 10.1186/s40001-023-01504-w
    Single-cell ribonucleic acid sequencing (scRNA-seq) has emerged as a transformative technology in neurological and neurosurgical research, revolutionising our comprehension of complex neurological disorders. In brain tumours, scRNA-seq has provided valuable insights into cancer heterogeneity, the tumour microenvironment, treatment resistance, and invasion patterns. It has also elucidated the brain tri-lineage cancer hierarchy and addressed limitations of current models. Neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis have been molecularly subtyped, dysregulated pathways have been identified, and potential therapeutic targets have been revealed using scRNA-seq. In epilepsy, scRNA-seq has explored the cellular and molecular heterogeneity underlying the condition, uncovering unique glial subpopulations and dysregulation of the immune system. ScRNA-seq has characterised distinct cellular constituents and responses to spinal cord injury in spinal cord diseases, as well as provided molecular signatures of various cell types and identified interactions involved in vascular remodelling. Furthermore, scRNA-seq has shed light on the molecular complexities of cerebrovascular diseases, such as stroke, providing insights into specific genes, cell-specific expression patterns, and potential therapeutic interventions. This review highlights the potential of scRNA-seq in guiding precision medicine approaches, identifying clinical biomarkers, and facilitating therapeutic discovery. However, challenges related to data analysis, standardisation, sample acquisition, scalability, and cost-effectiveness need to be addressed. Despite these challenges, scRNA-seq has the potential to transform clinical practice in neurological and neurosurgical research by providing personalised insights and improving patient outcomes.
  6. Awuah WA, Adebusoye FT, Alshareefy Y, Cheng Ng J, Tomas Ferreira AL, Abdus Salam AL, et al.
    Ann Med Surg (Lond), 2023 Aug;85(8):3965-3973.
    PMID: 37554866 DOI: 10.1097/MS9.0000000000001053
    Lumbar disk herniation (LDH) is a common condition affecting millions worldwide. The management of LDH has evolved over the years, with the development of newer surgical techniques that aim to provide better outcomes with minimal invasiveness. One promising emerging technique is biportal endoscopic spinal surgery (BESS), which utilizes specialized endoscopic equipment to treat LDH through two small incisions. This review aims to assess the effectiveness of BESS as a management option for LDH by analyzing the available literature on surgical outcomes and potential complications associated with the technique. Our review shows that BESS is associated with favorable postoperative results as judged by clinical scoring systems, such as visual analog scale, Oswestry disability index, and MacNab criteria. BESS has several advantages over traditional open surgery, including minimized blood loss, a shorter duration of hospitalization, and an expedited healing process. However, the technique has limitations, such as a steep learning curve and practical challenges for surgeons. Our review offers recommendations for the optimal use of BESS in clinical practice, and provides a foundation for future research and development in this field, aiming to improve patient outcomes and quality of life.
  7. Awuah WA, Adebusoye FT, Wellington J, David L, Salam A, Weng Yee AL, et al.
    World Neurosurg X, 2024 Jul;23:100301.
    PMID: 38577317 DOI: 10.1016/j.wnsx.2024.100301
    Neurosurgeons receive extensive technical training, which equips them with the knowledge and skills to specialise in various fields and manage the massive amounts of information and decision-making required throughout the various stages of neurosurgery, including preoperative, intraoperative, and postoperative care and recovery. Over the past few years, artificial intelligence (AI) has become more useful in neurosurgery. AI has the potential to improve patient outcomes by augmenting the capabilities of neurosurgeons and ultimately improving diagnostic and prognostic outcomes as well as decision-making during surgical procedures. By incorporating AI into both interventional and non-interventional therapies, neurosurgeons may provide the best care for their patients. AI, machine learning (ML), and deep learning (DL) have made significant progress in the field of neurosurgery. These cutting-edge methods have enhanced patient outcomes, reduced complications, and improved surgical planning.
  8. Awuah WA, Roy S, Tan JK, Adebusoye FT, Qiang Z, Ferreira T, et al.
    J Cell Mol Med, 2024 Apr;28(7):e18159.
    PMID: 38494861 DOI: 10.1111/jcmm.18159
    Gastric cancer (GC) represents a major global health burden and is responsible for a significant number of cancer-related fatalities. Its complex nature, characterized by heterogeneity and aggressive behaviour, poses considerable challenges for effective diagnosis and treatment. Single-cell RNA sequencing (scRNA-seq) has emerged as an important technique, offering unprecedented precision and depth in gene expression profiling at the cellular level. By facilitating the identification of distinct cell populations, rare cells and dynamic transcriptional changes within GC, scRNA-seq has yielded valuable insights into tumour progression and potential therapeutic targets. Moreover, this technology has significantly improved our comprehension of the tumour microenvironment (TME) and its intricate interplay with immune cells, thereby opening avenues for targeted therapeutic strategies. Nonetheless, certain obstacles, including tumour heterogeneity and technical limitations, persist in the field. Current endeavours are dedicated to refining protocols and computational tools to surmount these challenges. In this narrative review, we explore the significance of scRNA-seq in GC, emphasizing its advantages, challenges and potential applications in unravelling tumour heterogeneity and identifying promising therapeutic targets. Additionally, we discuss recent developments, ongoing efforts to overcome these challenges, and future prospects. Although further enhancements are required, scRNA-seq has already provided valuable insights into GC and holds promise for advancing biomedical research and clinical practice.
  9. Awuah WA, Huang H, Kalmanovich J, Mehta A, Mikhailova T, Ng JC, et al.
    Medicine (Baltimore), 2023 Aug 11;102(32):e34614.
    PMID: 37565922 DOI: 10.1097/MD.0000000000034614
    The circadian rhythm (CR) is a fundamental biological process regulated by the Earth's rotation and solar cycles. It plays a critical role in various bodily functions, and its dysregulation can have systemic effects. These effects impact metabolism, redox homeostasis, cell cycle regulation, gut microbiota, cognition, and immune response. Immune mediators, cycle proteins, and hormones exhibit circadian oscillations, supporting optimal immune function and defence against pathogens. Sleep deprivation and disruptions challenge the regulatory mechanisms, making immune responses vulnerable. Altered CR pathways have been implicated in diseases such as diabetes, neurological conditions, and systemic autoimmune diseases (SADs). SADs involve abnormal immune responses to self-antigens, with genetic and environmental factors disrupting self-tolerance and contributing to conditions like Systemic Lupus Erythematosus, Rheumatoid Arthritis, and Inflammatory Myositis. Dysregulated CR may lead to increased production of pro-inflammatory cytokines, contributing to the systemic responses observed in SADs. Sleep disturbances significantly impact the quality of life of patients with SADs; however, they are often overlooked. The relationship between sleep and autoimmune conditions, whether causal or consequential to CR dysregulation, remains unclear. Chrono-immunology investigates the role of CR in immunity, offering potential for targeted therapies in autoimmune conditions. This paper provides an overview of the connections between sleep and autoimmune conditions, highlighting the importance of recognizing sleep disturbances in SADs and the need for further research into the complex relationship between the CR and autoimmune diseases.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links