Displaying all 6 publications

Abstract:
Sort:
  1. Alhawari ARH, Majeed SF, Saeidi T, Mumtaz S, Alghamdi H, Hindi AT, et al.
    Micromachines (Basel), 2021 Apr 07;12(4).
    PMID: 33917167 DOI: 10.3390/mi12040411
    The increasing needs of free licensed frequency bands like Industrial, Scientific, and Medical (ISM), Wireless Local Area Network (WLAN), and 5G for underwater communications required more bandwidth (BW) with higher data transferring rate. Microwaves produce a higher transferring rate of data, and their associated devices are smaller in comparison with sonar and ultrasonic. Thus, transceivers should have broad BW to cover more of a frequency band, especially from ultra-wideband (UWB) systems, which show potential outcomes. However, previous designs of similar work for underwater communications were very complicated, uneasy to fabricate, and large. Therefore, to overcome these shortcomings, a novel compact elliptical UWB antenna is designed to resonate from 1.3 to 7.2 GHz. It is invented from a polytetrafluoroethylene (PTFE) layer with a dielectric constant of 2.55 mm and a thickness of 0.8 mm. The proposed antenna shows higher gain and radiation efficiency and stability throughout the working band when compared to recent similarly reported designs, even at a smaller size. The characteristics of the functioning antenna are investigated through fluid mediums of fresh-water, seawater, distilled water, and Debye model water. Later, its channel capacity, bit rate error, and data rate are evaluated. The results demonstrated that the antenna offers compact, easier fabrication with better UWB characteristics for underwater 5G communications.
  2. Alhawari ARH, Saeidi T, Almawgani AHM, Hindi AT, Alghamdi H, Alsuwian T, et al.
    Micromachines (Basel), 2021 Dec 14;12(12).
    PMID: 34945409 DOI: 10.3390/mi12121559
    A low-profile Multiple Input Multiple Output (MIMO) antenna showing dual polarization, low mutual coupling, and acceptable diversity gain is presented by this paper. The antenna introduces the requirements of fifth generation (5G) and the satellite communications. A horizontally (4.8-31 GHz) and vertically polarized (7.6-37 GHz) modified antipodal Vivaldi antennas are simulated, fabricated, and integrated, and then their characteristics are examined. An ultra-wideband (UWB) at working bandwidths of 3.7-3.85 GHz and 5-40 GHz are achieved. Low mutual coupling of less than -22 dB is achieved after loading the antenna with cross-curves, staircase meander line, and integration of the metamaterial elements. The antennas are designed on a denim textile substrate with εr = 1.4 and h = 0.5 mm. A conductive textile called ShieldIt is utilized as conductor with conductivity of 1.8 × 104. After optimizing the proposed UWB-MIMO antenna's characteristics, it is increased to four elements positioned at the four corners of a denim textile substrate to be employed as a UWB-MIMO antenna for handset communications, 5G, Ka and Ku band, and satellite communications (X-band). The proposed eight port UWB-MIMO antenna has a maximum gain of 10.7 dBi, 98% radiation efficiency, less than 0.01 ECC, and acceptable diversity gain. Afterwards, the eight-ports antenna performance is examined on a simulated real voxel hand and chest. Then, it is evaluated and compared on physical hand and chest of body. Evidently, the simulated and measured results show good agreement between them. The proposed UWB-MIMO antenna offers a compact and flexible design, which is suitably wearable for 5G and satellite communications applications.
  3. Nor Azlin MI, Adam R, Sufian SS, Wahab NA, Mustafa N, Kamaruddin NA, et al.
    J Obstet Gynaecol Res, 2011 Feb;37(2):132-7.
    PMID: 21159037 DOI: 10.1111/j.1447-0756.2010.01330.x
    AIM: To evaluate the safety and tolerability of once or twice daily neutral protamine hagedorn (NPH) insulin in fasting pregnant diabetics during Ramadan.
    METHODS: This was a prospective cohort study conducted during Ramadan 2006 and 2007. Twenty four pregnant diabetic women were given NPH insulin once at 5 pm or twice daily at 5 pm and 5 am. Demographic data, blood glucose control, insulin requirement, days of fasting and hypoglycemic episodes were analyzed.
    RESULTS: Most women were parity 1 (37.5%) in their second trimester (54.2%) and worked during the daytime (87.5%). Fourteen women (58.3%) had gestational diabetes mellitus, nine women (37.5%) had type 2 and one (4.2%) had type 1 diabetes mellitus. There were significant reductions in mean fasting blood glucose (6.16 mmol/L versus 5.34 mmol/L, P = 0.001), glycosylated hemoglobin (HbA1c) (6.70% ± 0.91 versus 6.64% ± 0.96, P = 0.001) and serum fructosamine (232.4 mmol/L ± 24.0 versus 217.0 mmol/L ± 24.3, P = 0.001) after Ramadan compared to before Ramadan. Throughout the four weeks of Ramadan, home blood glucose monitoring showed a reducing trend and was within the acceptable limits. Insulin requirement was increased from the first to the fourth week with a reduction in insulin dose noted after (38.5 U/day) compared to before the start of Ramadan (40 U/day). Most women (79.2%) were able to fast for more than 15 days without any hypoglycemia or fetal demise.
    CONCLUSION: Once or twice daily NPH insulin is a safe and tolerable option for pregnant diabetics who wish to fast during Ramadan.
  4. Siriwardena AK, Serrablo A, Fretland ÅA, Wigmore SJ, Ramia-Angel JM, Malik HZ, et al.
    HPB (Oxford), 2023 Sep;25(9):985-999.
    PMID: 37471055 DOI: 10.1016/j.hpb.2023.05.360
    BACKGROUND: Contemporary management of patients with synchronous colorectal cancer and liver metastases is complex. The aim of this project was to provide a practical framework for care of patients with synchronous colorectal cancer and liver metastases with a focus on terminology, diagnosis and management.

    METHODS: This project was a multi-organisational, multidisciplinary consensus. The consensus group produced statements which focused on terminology, diagnosis and management. Statements were refined during an online Delphi process and those with 70% agreement or above were reviewed at a final meeting. Iterations of the report were shared by electronic mail to arrive at a final agreed document comprising twelve key statements.

    RESULTS: Synchronous liver metastases are those detected at the time of presentation of the primary tumour. The term "early metachronous metastases" applies to those absent at presentation but detected within 12 months of diagnosis of the primary tumour with "late metachronous metastases" applied to those detected after 12 months. Disappearing metastases applies to lesions which are no longer detectable on MR scan after systemic chemotherapy. Guidance was provided on the recommended composition of tumour boards and clinical assessment in emergency and elective settings. The consensus focused on treatment pathways including systemic chemotherapy, synchronous surgery and the staged approach with either colorectal or liver-directed surgery as first step. Management of pulmonary metastases and the role of minimally invasive surgery was discussed.

    CONCLUSIONS: The recommendations of this contemporary consensus provide information of practical value to clinicians managing patients with synchronous colorectal cancer and liver metastases.

  5. Lesmann H, Hustinx A, Moosa S, Klinkhammer H, Marchi E, Caro P, et al.
    Res Sq, 2024 Jun 10.
    PMID: 38903062 DOI: 10.21203/rs.3.rs-4438861/v1
    The most important factor that complicates the work of dysmorphologists is the significant phenotypic variability of the human face. Next-Generation Phenotyping (NGP) tools that assist clinicians with recognizing characteristic syndromic patterns are particularly challenged when confronted with patients from populations different from their training data. To that end, we systematically analyzed the impact of genetic ancestry on facial dysmorphism. For that purpose, we established the GestaltMatcher Database (GMDB) as a reference dataset for medical images of patients with rare genetic disorders from around the world. We collected 10,980 frontal facial images - more than a quarter previously unpublished - from 8,346 patients, representing 581 rare disorders. Although the predominant ancestry is still European (67%), data from underrepresented populations have been increased considerably via global collaborations (19% Asian and 7% African). This includes previously unpublished reports for more than 40% of the African patients. The NGP analysis on this diverse dataset revealed characteristic performance differences depending on the composition of training and test sets corresponding to genetic relatedness. For clinical use of NGP, incorporating non-European patients resulted in a profound enhancement of GestaltMatcher performance. The top-5 accuracy rate increased by +11.29%. Importantly, this improvement in delineating the correct disorder from a facial portrait was achieved without decreasing the performance on European patients. By design, GMDB complies with the FAIR principles by rendering the curated medical data findable, accessible, interoperable, and reusable. This means GMDB can also serve as data for training and benchmarking. In summary, our study on facial dysmorphism on a global sample revealed a considerable cross ancestral phenotypic variability confounding NGP that should be counteracted by international efforts for increasing data diversity. GMDB will serve as a vital reference database for clinicians and a transparent training set for advancing NGP technology.
  6. Lesmann H, Hustinx A, Moosa S, Klinkhammer H, Marchi E, Caro P, et al.
    medRxiv, 2024 May 21.
    PMID: 37503210 DOI: 10.1101/2023.06.06.23290887
    The most important factor that complicates the work of dysmorphologists is the significant phenotypic variability of the human face. Next-Generation Phenotyping (NGP) tools that assist clinicians with recognizing characteristic syndromic patterns are particularly challenged when confronted with patients from populations different from their training data. To that end, we systematically analyzed the impact of genetic ancestry on facial dysmorphism. For that purpose, we established the GestaltMatcher Database (GMDB) as a reference dataset for medical images of patients with rare genetic disorders from around the world. We collected 10,980 frontal facial images - more than a quarter previously unpublished - from 8,346 patients, representing 581 rare disorders. Although the predominant ancestry is still European (67%), data from underrepresented populations have been increased considerably via global collaborations (19% Asian and 7% African). This includes previously unpublished reports for more than 40% of the African patients. The NGP analysis on this diverse dataset revealed characteristic performance differences depending on the composition of training and test sets corresponding to genetic relatedness. For clinical use of NGP, incorporating non-European patients resulted in a profound enhancement of GestaltMatcher performance. The top-5 accuracy rate increased by +11.29%. Importantly, this improvement in delineating the correct disorder from a facial portrait was achieved without decreasing the performance on European patients. By design, GMDB complies with the FAIR principles by rendering the curated medical data findable, accessible, interoperable, and reusable. This means GMDB can also serve as data for training and benchmarking. In summary, our study on facial dysmorphism on a global sample revealed a considerable cross ancestral phenotypic variability confounding NGP that should be counteracted by international efforts for increasing data diversity. GMDB will serve as a vital reference database for clinicians and a transparent training set for advancing NGP technology.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links