METHODS: We reviewed a cohort of people with T2D seeking care from two tertiary hospitals in the metropolitan cities of the state of Selangor and Negeri Sembilan from January 2012 to May 2021. To identify the 3-year predictor of developing CKD (primary outcome) and CKD progression (secondary outcome), the dataset was randomly split into a training and test set. A Cox proportional hazards (CoxPH) model was developed to identify predictors of developing CKD. The resultant CoxPH model was compared with other machine learning models on their performance using C-statistic.
RESULTS: The cohorts included 1992 participants, of which 295 had developed CKD and 442 reported worsening of kidney function. Equation for the 3-year risk of developing CKD included gender, haemoglobin A1c, triglyceride and serum creatinine levels, estimated glomerular filtration rate, history of cardiovascular disease and diabetes duration. For risk of CKD progression, the model included systolic blood pressure, retinopathy and proteinuria. The CoxPH model was better at prediction compared with other machine learning models examined for incident CKD (C-statistic: training 0.826; test 0.874) and CKD progression (C-statistic: training 0.611; test 0.655). The risk calculator can be found at https://rs59.shinyapps.io/071221/.
CONCLUSIONS: The Cox regression model was the best performing model to predict people with T2D who will develop a 3-year risk of incident CKD and CKD progression in a Malaysian cohort.
METHODS: A state-transition microsimulation model was developed to compare the clinical and economic outcomes of 4 treatments: standard care, dipeptidyl peptidase-4 inhibitors, sodium-glucose cotransporter-2 inhibitors (SGLT2is), and glucagon-like peptide-1 receptor agonists. Cost-effectiveness was assessed from a healthcare provider's perspective over a lifetime horizon with 3% discount rate in a hypothetical cohort of people with T2D. Data input were informed from literature and local data when available. Outcome measures include costs, quality-adjusted life-years, incremental cost-effectiveness ratios, and net monetary benefits. Univariate and probabilistic sensitivity analyses were performed to assess uncertainties.
RESULTS: Over a lifetime horizon, the costs to treat a person with T2D ranged from RM 12 494 to RM 41 250, whereas the QALYs gains ranged from 6.155 to 6.731, depending on the treatment. Based upon a willingness-to-pay threshold of RM 29 080 per QALY, we identified SGLT2i as the most cost-effective glucose-lowering treatment, as add-on to standard care over patient's lifetime, with the net monetary benefit of RM 176 173 and incremental cost-effectiveness ratios of RM 12 279 per QALY gained. The intervention also added 0.577 QALYs and 0.809 LYs compared with standard care. Cost-effectiveness acceptability curve showed that SGLT2i had the highest probability of being cost-effective in Malaysia across varying willingness-to-pay threshold. The results were robust to various sensitivity analyses.
CONCLUSIONS: SGLT2i was found to be the most cost-effective intervention to mitigate diabetes-related complications.
MATERIALS AND METHODS: A dose-ranging analysis using SKF7® was conducted through a randomized, double-blind, multicentre, placebo-controlled, phase 2 clinical trial involving individuals with obesity (N = 133) between January 2020 and April 2021. The potential percentage of change was assessed in relation to BW, BMI, WC and WHtR.
RESULTS: Average treatment effect estimates (treatment group vs. placebo) show a statistically significant reduction in the percentage of change for BW (mean = -2.915; CI: -4.546, -1.285), BMI (-2.921; CI: -4.551, -1.291), WC (mean = -2.187; CI: -3.784, -0.589) and WHtR (mean = -2.294, CI: -3.908, -0.681) in the group with a total of 750 mg of SKF7® (p