Introduction: Patients with Nasopharyngeal carcinoma (NPC) usually diagnosed at advanced cancer stage and re- current case. Rac1 have become an emerging therapeutic target for metastasis cancer. This gene is critically involved in cell polarization and reactive oxygen species-mediated cell killing. This study aims to investigate the Rac1 activ- ities in NPC/HK1 cell line using siRNA approach and evaluate the calcium deposition profile. Methods: The NPC/ HK1cells were transfected with Rac1-siRNA (siRac1) at concentrations of 50nM, 100nM and 200nM for 24 hours and stained with alizarin red s for calcium mineralization profile. Levels of Rac1 gene expression were measured via qRT-PCR followed by the time dependent assessment for 24, 48 and 72 hours. Results: Findings revealed that siRac1 concentrations of 200nM (p-value
The human leukaemia develops with abnormal increase of blast cells in the bone marrow. Leukaemia is caused by genetic aberrations which activates proto-oncogenes and inactivates tumor-suppressor genes and eventually leads to leukemogenesis. Myelodysplastic syndrome is a preleukemic state which shares similar symptoms and causative factors as leukaemia. FOXO3 and c-Myc have been increasingly recognized as key regulatory genes involved in the initiation and development of leukaemia and myelodysplastic syndromes. Their roles in these diseases is being investigated and findings thus far has indicated that FOXO3 acts as a tumor suppressor while c-Myc has been identified as a proto-oncogene. Currently published literature indicate that there are limited research on the correlation between FOXO3 and c-Myc especially in leukaemia and myelodysplastic syndrome. This review will focus on the key regulatory roles of FOXO3 and c-Myc in leukaemia and myelodysplastic syndrome.