Displaying all 3 publications

Abstract:
Sort:
  1. Acharya M, Singh N, Gupta G, Tambuwala MM, Aljabali AAA, Chellappan DK, et al.
    Cell Signal, 2024 Apr;116:111043.
    PMID: 38211841 DOI: 10.1016/j.cellsig.2024.111043
    Calcium is a ubiquitous second messenger that is indispensable in regulating neurotransmission and memory formation. A precise intracellular calcium level is achieved through the concerted action of calcium channels, and calcium exerts its effect by binding to an array of calcium-binding proteins, including calmodulin (CAM), calcium-calmodulin complex-dependent protein kinase-II (CAMK-II), calbindin (CAL), and calcineurin (CAN). Calbindin orchestrates a plethora of signaling events that regulate synaptic transmission and depolarizing signals. Vitamin D, an endogenous fat-soluble metabolite, is synthesized in the skin upon exposure to ultraviolet B radiation. It modulates calcium signaling by increasing the expression of the calcium-sensing receptor (CaSR), stimulating phospholipase C activity, and regulating the expression of calcium channels such as TRPV6. Vitamin D also modulates the activity of calcium-binding proteins, including CAM and calbindin, and increases their expression. Calbindin, a high-affinity calcium-binding protein, is involved in calcium buffering and transport in neurons. It has been shown to inhibit apoptosis and caspase-3 activity stimulated by presenilin 1 and 2 in AD. Whereas CAM, another calcium-binding protein, is implicated in regulating neurotransmitter release and memory formation by phosphorylating CAN, CAMK-II, and other calcium-regulated proteins. CAMK-II and CAN regulate actin-induced spine shape changes, which are further modulated by CAM. Low levels of both calbindin and vitamin D are attributed to the pathology of Alzheimer's disease. Further research on vitamin D via calbindin-CAMK-II signaling may provide newer insights, revealing novel therapeutic targets and strategies for treatment.
  2. Acharya M, Deo RC, Tao X, Barua PD, Devi A, Atmakuru A, et al.
    Comput Methods Programs Biomed, 2024 Nov 12;259:108506.
    PMID: 39581069 DOI: 10.1016/j.cmpb.2024.108506
    BACKGROUND AND OBJECTIVES: Mild Cognitive Impairment (MCI) and Alzheimer's Disease (AD) are progressive neurological disorders that significantly impair the cognitive functions, memory, and daily activities. They affect millions of individuals worldwide, posing a significant challenge for its diagnosis and management, leading to detrimental impacts on patients' quality of lives and increased burden on caregivers. Hence, early detection of MCI and AD is crucial for timely intervention and effective disease management.

    METHODS: This study presents a comprehensive systematic review focusing on the applications of deep learning in detecting MCI and AD using electroencephalogram (EEG) signals. Through a rigorous literature screening process based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, the research has investigated 74 different papers in detail to analyze the different approaches used to detect MCI and AD neurological disorders.

    RESULTS: The findings of this study stand out as the first to deal with the classification of dual MCI and AD (MCI+AD) using EEG signals. This unique approach has enabled us to highlight the state-of-the-art high-performing models, specifically focusing on deep learning while examining their strengths and limitations in detecting the MCI, AD, and the MCI+AD comorbidity situations.

    CONCLUSION: The present study has not only identified the current limitations in deep learning area for MCI and AD detection but also proposes specific future directions to address these neurological disorders by implement best practice deep learning approaches. Our main goal is to offer insights as references for future research encouraging the development of deep learning techniques in early detection and diagnosis of MCI and AD neurological disorders. By recommending the most effective deep learning tools, we have also provided a benchmark for future research, with clear implications for the practical use of these techniques in healthcare.

  3. Jacob SS, Bankapur A, Barkur S, Acharya M, Chidangil S, Rao P, et al.
    Front Physiol, 2020;11:821.
    PMID: 32754052 DOI: 10.3389/fphys.2020.00821
    Derangements in bilirubin metabolism and/or dysfunctions in the hepato-biliary system lead to the unhealthy buildup of bilirubin in blood, resulting in jaundice. During the course of this disorder, circulating red cells are invariably subjected to toxic effects of serum bilirubin and an array of inflammatory compounds. This study aimed to investigate the vibrational spectroscopy of live red cells in jaundice using micro-Raman spectroscopy combined with optical-trap. Red cells from blood samples of healthy volunteers and patients with jaundice were optically immobilized and micro-Raman probed using a 785 nm diode laser. Raman signatures from red cells in jaundice exhibited significant variations from the normal and the spectral-markers were obtained from multivariate analytical methods. This research gives insightful views on how different pathologies can act as "stress-milieus" for red cells in circulation, possibly impeding their normal functions and also exasperating anemia. Raman spectroscopy, an emerging bio-analytical technique, is sensitive in detecting molecular-conformations in situ, at cellular-levels and in real-time. This study could pave way in understanding fundamental red cell behavior in different diseases by analyzing Raman markers.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links