Displaying all 4 publications

Abstract:
Sort:
  1. Abjani F, Khan NA, Yousuf FA, Siddiqui R
    Cont Lens Anterior Eye, 2016 Jun;39(3):239-43.
    PMID: 26675112 DOI: 10.1016/j.clae.2015.11.004
    Acanthamoeba cysts are highly resistant to contact lens disinfecting solutions. Acanthamoeba cyst wall is partially made of 1,4 β-glucan (i.e., cellulose) and other complex polysaccharides making it a hardy shell that protects the resident amoeba. Here, we hypothesize that targeting the cyst wall structure in addition to antiamoebic compound would improve the efficacy of marketed contact lens disinfecting solutions. Using chlorhexidine as an antiamoebic compound and cellulase enzyme to disrupt cyst wall structure, the findings revealed that combination of both agents abolished viability of Acanthamoeba castellanii cysts and trophozoites. When tested alone, none of the agents nor contact lens disinfecting solutions completely destroyed A. castellanii cysts and trophozoites. The absence of cyst wall-degrading enzymes in marketed contact lens disinfecting solutions render them ineffective against Acanthamoeba cysts. It is concluded that the addition of cyst wall degrading molecules in contact lens disinfecting solutions will enhance their efficacy in decreasing the incidence of Acanthamoeba effectively.
  2. Abjani F, Khan NA, Jung SY, Siddiqui R
    Exp Parasitol, 2017 Dec;183:187-193.
    PMID: 28919333 DOI: 10.1016/j.exppara.2017.09.007
    The aim of this study was (i) to assess the antimicrobial effects of contact lens disinfecting solutions marketed in Malaysia against common bacterial eye pathogens and as well as eye parasite, Acanthamoeba castellanii, and (ii) to determine whether targeting cyst wall would improve the efficacy of contact lens disinfectants. Using ISO 14729 Stand-Alone Test for disinfecting solutions, bactericidal and amoebicidal assays of six different contact lens solutions including Oxysept®, AO SEPT PLUS, OPTI-FREE® pure moist®, Renu® fresh™, FreshKon® CLEAR and COMPLETE RevitaLens™ were performed using Manufacturers Minimum recommended disinfection time (MRDT). The efficacy of contact lens solutions was determined against keratitis-causing microbes, namely: Pseudomonas aeruginosa, Methicillin-resistant Staphylococcus aureus, Streptococcus pyogenes, Streptococcus pneumoniae, and Acanthamoeba castellanii. In addition, using chlorhexidine as an antiamoebic compound and cellulase enzyme to disrupt cyst wall structure, we determined whether combination of both agents can enhance efficacy of marketed contact lens disinfectants against A. castellanii trophozoites and cysts, in vitro. The results revealed that all contact lens disinfectants tested showed potent bactericidal effects exhibiting 100% kill against all bacterial species tested. In contrast, none of the contact lens disinfectants had potent effects against Acanthamoeba cysts viability. When tested against trophozoites, two disinfectants, Oxysept Multipurpose and AO-sept Multipurpose showed partial amoebicidal effects. Using chlorhexidine as an antiamoebic compound and cellulase enzyme to disrupt cyst wall structure, the findings revealed that combination of both agents in contact lens disinfectants abolished viability of A. castellanii cysts and trophozoites. Given the inefficacy of contact lens disinfectants tested in this study, these findings present a significant concern to public health. These findings revealed that targeting cyst wall by using cyst wall degrading molecules in contact lens disinfecting solutions will enhance their efficacy against this devastating eye infection.
  3. Siddiqui R, Abjani F, Yeo CI, Tiekink ER, Khan NA
    J Negat Results Biomed, 2017 Apr 03;16(1):6.
    PMID: 28366172 DOI: 10.1186/s12952-017-0070-7
    BACKGROUND: Gold compounds have shown promise in the treatment of non-communicable diseases such as rheumatoid arthritis and cancer, and are considered of value as anti-microbial agents against Gram-negative and Gram-positive bacteria, and have anti-parasitic properties against Schistosoma mansoni, Trypanosoma brucei, Plasmodium falciparum, Leishmania infantinum, Giardia lamblia, and Entamoeba histolytica. They are known to affect enzymatic activities that are required for the cellular respiration processes.

    METHODS: Anti-amoebic effects of phosphanegold(I) thiolates were tested against clinical isolate of A. castellanii belonging to the T4 genotype by employing viability assays, growth inhibition assays, encystation assays, excystation assays, and zymographic assays.

    RESULTS: The treatment of A. castellanii with the phosphanegold(I) thiolates tested (i) had no effect on the viability of A. castellanii as determined by Trypan blue exclusion test, (ii) did not affect amoebae growth using PYG growth medium, (iii) did not inhibit cellular differentiation, and (iv) had no effect on the extracellular proteolytic activities of A. castellanii.

    CONCLUSION: Being free-living amoeba, A. castellanii is a versatile respirator and possesses respiratory mechanisms that adapt to various aerobic and anaerobic environments to avoid toxic threats and adverse conditions. For the first time, our findings showed that A. castellanii exhibits resistance to the toxic effects of gold compounds and could prove to be an attractive model to study mechanisms of metal resistance in eukaryotic cells.

  4. Abjani F, Madhavan P, Chong PP, Chinna K, Rhodes CA, Lim YAL
    Ann Hum Biol, 2023 Feb;50(1):137-147.
    PMID: 36650931 DOI: 10.1080/03014460.2023.2170464
    CONTEXT: The continuous rise in urbanisation and its associated factors has been reflected in the structure of the human gut ecosystem.

    OBJECTIVE: The main focus of this review is to discuss and summarise the major risk factors associated with urbanisation that affect human gut microbiota thus affecting human health.

    METHODS: Multiple medical literature databases, namely PubMed, Google, Google Scholar, and Web of Science were used to find relevant materials for urbanisation and its major factors affecting human gut microbiota/microbiome. Both layman and Medical Subject Headings (MeSH) terms were used in the search. Due to the scarcity of the data, no limitation was set on the publication date. Relevant materials in the English language which include case reports, chapters of books, journal articles, online news reports and medical records were included in this review.

    RESULTS: Based on the data discussed in the review, it is quite clear that urbanisation and its associated factors have long-standing effects on the human gut microbiota that result in alterations of gut microbial diversity and composition. This is a matter of serious concern as chronic inflammatory diseases are on the rise in urbanised societies.

    CONCLUSION: A better understanding of the factors associated with urbanisation will help us to identify and implement new biological and social approaches to prevent and treat diseases and improve health globally by deepening our understanding of these relationships and increasing studies across urbanisation gradients.HIGHLIGHTSHuman gut microbiota have been linked to almost every important function, including metabolism, intestinal homeostasis, immune system, biosynthesis of vitamins, brain processes, and behaviour.However, dysbiosis i.e., alteration in the composition and diversity of gut microbiota is associated with the pathogenesis of many chronic conditions.In the 21st century, urbanisation represents a major demographic shift in developed and developing countries.During this period of urbanisation, humans have been exposed to many environmental exposures, all of which have led to the dysbiosis of human gut microbiota.The main focus of the review is to discuss and summarise the major risk factors associated with urbanisation and how it affects the diversity and composition of gut microbiota which ultimately affects human health.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links