MATERIALS AND METHODS: A total of 12 clinically healthy crossbred Boer female goats were divided into three groups; A, B and C (4 goats each per group). Group A was inoculated with 2 ml sterile phosphate buffered saline via intradermal route as the negative control group whilst Group B was inoculated with 2 ml of MA extract (1 g/ml) intradermally and Group C was then inoculated with 2 ml (1×10(9)) colony forming unit of active C. pseudotuberculosis intradermally. Blood sample was collected aseptically from the jugular vein periodically for complete blood count (CBC) analysis throughout the experimental period (3 months).
RESULT: A significant decrease (p<0.05) was observed in red blood cells, hemoglobin (Hb), packed cell volume, mean corpuscular volume and mean corpuscular Hb concentration in Groups B and C as compared to the control while WBCs, neutrophil, lymphocyte and basophil showed a significant increase (p<0.05) as compared to the control.
CONCLUSION: The inoculation of C. pseudotuberculosis and MA resulted in a significant change in the CBC, thereby, indicating that MA has a role in caseous lymphadenitis pathogenesis.
MATERIALS AND METHODS: A broiler duck farm with a population of 900 Muscovy ducks was having a complaint of a 5% mortality rate in their 3-week-old ducklings. Upon presentation, 10% of the ducks appeared to be listless, dyspneic, ruffled feathers, and cyanotic. Postmortem examination of the dead birds was conducted. The collected samples were subjected to isolation and identification of the associated Aspergillus fumigatus under the microscope using the scotch tape method.
RESULTS: Postmortem examination revealed whitish to creamy caseous nodules in the lungs, thoracic air sacs, gizzard, proventriculus, and intestines. Granuloma lesions and infiltration of inflammatory cells were observed in the lung and liver tissues. As for therapeutic management, all ducks were treated with copper sulfate, erythromycin, and multivitamins as the fungicide, antibiotic, and supplement, respectively, via drinking water.
CONCLUSION: There is no effective treatment for Aspergillosis as the spores are difficult to destroy completely. Nonetheless, the disease can be controlled and prevented effectively with proper farm sanitation and providing a suitable feed storage environment to inhibit the growth of this opportunistic fungus.