Displaying all 2 publications

Abstract:
Sort:
  1. Mutlaq KA, Nyangaresi VO, Omar MA, Abduljabbar ZA, Abduljaleel IQ, Ma J, et al.
    PLoS One, 2024;19(1):e0296781.
    PMID: 38261555 DOI: 10.1371/journal.pone.0296781
    The incorporation of information and communication technologies in the power grids has greatly enhanced efficiency in the management of demand-responses. In addition, smart grids have seen considerable minimization in energy consumption and enhancement in power supply quality. However, the transmission of control and consumption information over open public communication channels renders the transmitted messages vulnerable to numerous security and privacy violations. Although many authentication and key agreement protocols have been developed to counter these issues, the achievement of ideal security and privacy levels at optimal performance still remains an uphill task. In this paper, we leverage on Hamming distance, elliptic curve cryptography, smart cards and biometrics to develop an authentication protocol. It is formally analyzed using the Burrows-Abadi-Needham (BAN) logic, which shows strong mutual authentication and session key negotiation. Its semantic security analysis demonstrates its robustness under all the assumptions of the Dolev-Yao (DY) and Canetti- Krawczyk (CK) threat models. From the performance perspective, it is shown to incur communication, storage and computation complexities compared with other related state of the art protocols.
  2. Nyangaresi VO, Abduljabbar ZA, Mutlaq KA, Bulbul SS, Ma J, Aldarwish AJY, et al.
    Sci Rep, 2024 Jul 13;14(1):16223.
    PMID: 39003319 DOI: 10.1038/s41598-024-67064-z
    Advancements in cloud computing, flying ad-hoc networks, wireless sensor networks, artificial intelligence, big data, 5th generation mobile network and internet of things have led to the development of smart cities. Owing to their massive interconnectedness, high volumes of data are collected and exchanged over the public internet. Therefore, the exchanged messages are susceptible to numerous security and privacy threats across these open public channels. Although many security techniques have been designed to address this issue, most of them are still vulnerable to attacks while some deploy computationally extensive cryptographic operations such as bilinear pairings and blockchain. In this paper, we leverage on biometrics, error correction codes and fuzzy commitment schemes to develop a secure and energy efficient authentication scheme for the smart cities. This is informed by the fact that biometric data is cumbersome to reproduce and hence attacks such as side-channeling are thwarted. We formally analyze the security of our protocol using the Burrows-Abadi-Needham logic logic, which shows that our scheme achieves strong mutual authentication among the communicating entities. The semantic analysis of our protocol shows that it mitigates attacks such as de-synchronization, eavesdropping, session hijacking, forgery and side-channeling. In addition, its formal security analysis demonstrates that it is secure under the Canetti and Krawczyk attack model. In terms of performance, our scheme is shown to reduce the computation overheads by 20.7% and hence is the most efficient among the state-of-the-art protocols.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links