Displaying publications 1 - 20 of 40 in total

Abstract:
Sort:
  1. Jayaram G, Abdul Rahman N
    Acta Cytol., 1997 Jul-Aug;41(4 Suppl):1253-60.
    PMID: 9990253
    Ki-1-positive anaplastic large cell lymphoma (Ki-1 ALCL), one of the more recently described pleomorphic types of lymphoma, affects mostly children and adolescents and is sometimes mistaken for carcinoma or sarcoma.
  2. Rosdi, N.H., Mohd Kanafi, N., Abdul Rahman, N.
    MyJurnal
    Cellulose acetate (CA) is an interesting material due to its wide spectrum of utilities across different domains ranging from absorbent to membrane filters. In this study, polystyrene (PS) nanofibres, and cellulose acetate/polystyrene (CA/PS) blend nanofibres with various ratios of CA: PS from 20: 80 to 80: 20 were fabricated by using electrospinning technique. The SEM images show that the nanofibres exhibited non-uniform and random orientation with the average fibre diameter in the range of 100 to 800 nm. It was found that the incorporation of PS had a great effect on the morphology of nanofibre. At high proportion of PS, no or less beaded CA/PS nanofibres were formed. Thermal properties of the composite nanofibres were investigated by using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) techniques. The TGA results showed thermal stability of CA/PS nanofibres were higher than pristine CA.
  3. Nordin NA, Abdul Rahman N, Abdullah AH
    Molecules, 2020 Jul 06;25(13).
    PMID: 32640766 DOI: 10.3390/molecules25133081
    Heavy metal pollution, such as lead, can cause contamination of water resources and harm human life. Many techniques have been explored and utilized to overcome this problem, with adsorption technology being the most common strategies for water treatment. In this study, carbon nanofibers, polyacrylonitrile (PAN)/sago lignin (SL) carbon nanofibers (PAN/SL CNF) and PAN/SL activated carbon nanofibers (PAN/SL ACNF), with a diameter approximately 300 nm, were produced by electrospinning blends of polyacrylonitrile and sago lignin followed by thermal and acid treatments and used as adsorbents for the removal of Pb(II) ions from aqueous solutions. The incorporation of biodegradable and renewable SL in PAN/SL blends fibers produces the CNF with a smaller diameter than PAN only but preserves the structure of CNF. The adsorption of Pb(II) ions on PAN/SL ACNF was three times higher than that of PAN/SL CNF. The enhanced removal was due to the nitric acid treatment that resulted in the formation of surface oxygenated functional groups that promoted the Pb(II) ions adsorption. The best-suited adsorption conditions that gave the highest percentage removal of 67%, with an adsorption capacity of 524 mg/g, were 40 mg of adsorbent dosage, 125 ppm of Pb(II) solution, pH 5, and a contact time of 240 min. The adsorption data fitted the Langmuir isotherm and the pseudo-second-order kinetic models, indicating that the adsorption is a monolayer, and is governed by the availability of the adsorption sites. With the adsorption capacity of 588 mg/g, determined via the Langmuir isotherm model, the study demonstrated the potential of PAN/SL ACNFs as the adsorbent for the removal of Pb(II) ions from aqueous solution.
  4. Mohd Zahid AZ, Abdul Rahman N, Ahmad ZA
    Med J Malaysia, 2021 07;76(4):585-587.
    PMID: 34305125
    Adenomyosis is a common gynaecological condition encountered in clinical practice. Treatment of adenomyosis can present a great challenge to gynaecologists as women often become resistant to hormonal treatment eventually needing surgical intervention. Hysterectomy has long been the definitive treatment for adenomyosis. However, with women currently being diagnosed at an earlier age and still have not completed their family, there is an increasing demand for effective intervention with uterine conservation. We report here two cases of patients who had undergone a combination of hysteroscopic resection of the endomyometrium combined with Mirena insertion with successful outcome.
  5. Mohamed NA, Mansur FAF, Abdul Rahman N
    Malays J Pathol, 2020 Apr;42(1):107-110.
    PMID: 32342938
    INTRODUCTION: Malaysia declared its intent to eliminate malaria by 2020, with a phased goal of achieving zero local transmission. Nonetheless, Malaysia is highl susceptible to malaria importation due to geographical proximity to high-burden countries e.g. Thailand, Myanmar and high influx of foreign workers and students from Asia and Africa.

    CASE SERIES: We accumulated all malaria cases diagnosed in a tertiary hospital within a period of two years. Three cases were reported, where all of the patients were foreigners with recent travel history to African countries. All of them were infected by P. falciparum, responded to treatment and discharged well.

    DISCUSSION: This case series highlighted the importance of acquiring recent travel history during history taking and having a high index of suspicions on malaria when dealing with feverish patients originated particularly from African countries.

  6. Zakaria AF, Kamaruzaman S, Abdul Rahman N
    Polymers (Basel), 2021 Oct 19;13(20).
    PMID: 34685349 DOI: 10.3390/polym13203590
    The issue of heavy metal contamination has caused a great deal of concern among water quality experts today, as it contributes to water pollution. Activated carbon nanofibers (ACNFs) showed a significant ability in removing heavy metals from the wastewater. In this study, polyacrylonitrile (PAN) was blended and electrospun with an abundant and inexpensive biopolymer, lignin and a water soluble polymer, poly(ethylene glycol) (PEG), by using an electrospinning technique to form nanofibers. The electrospun nanofibers were then investigated as a precursor for the production of porous ACNFs to study the removal of nickel(II) ions by adsorption technique. PEG was added to act as a porogen and to create the porous structure of carbon nanofibers (CNFs). CNFs were prepared by thermal treatment of the electrospun nanofibers and followed by activation of CNFs by thermal and acid treatment on CNFs. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) spectral analysis of the ACNFs showed a strong absorption peak of the C-O functional group, indicating the increase in the oxygenated compound. Field emission scanning electron microscopy (FESEM) images concluded that the ACNFs have more porous and compact fibers with a smaller fiber diameter of 263 ± 11 nm, while the CNFs are less compact and have slightly larger fiber diameter of 323 ± 6 nm. The adsorption study showed that the ACNFs possessed a much higher adsorption capacity of 18.09 mg/g compared with the CNFs, which the amount adsorbed was achieved only at 2.7 mg/g. The optimum adsorption conditions that gave the highest percentage of 60% for nickel(II) ions removal were 50 mg of adsorbent dosage, 100 ppm of nickel(II) solution, pH 3, and a contact time of 60 min. The study demonstrated that the fabrication of ACNFs from PAN/lignin/PEG electrospun nanofibers have potential as adsorbents for the removal of heavy metal contaminants.
  7. Ahmad MAT, Abdul Rahman N
    Polymers (Basel), 2021 Nov 15;13(22).
    PMID: 34833237 DOI: 10.3390/polym13223938
    In this study, polyacrylonitrile (PAN) was mixed with a renewable polymer, lignin, to produce electrospun nanofibers by using an electrospinning technique. Lignin was utilized as a soft template that was removed from the nanofibers by using a selective dissolution technique to create porous PAN nanofibers. These nanofibers were characterized with Fourier transform infrared (FTIR), field emission scanning electron microscopy (FESEM), thermogravimetry analysis (TGA), X-ray diffraction (XRD), and Brunauer-Emmett-Teller (BET) to study their properties and morphology. The results showed that lignin can be homogeneously mixed into the PAN solution and successfully electrospun into nanofibers. FESEM results showed a strong relationship between the PAN: lignin ratio and the diameter of the electrospun fibers. Lignin was successfully removed from electrospun nanofibers by a selective chemical dissolution technique, which resulted in roughness and porousness on the surface of the nanofibers. Based on the BET result, the specific surface area of the PAN/lignin nanofibers was more than doubled following the removal of lignin compared to PAN nanofibers. The highest specific surface area of nanofibers after selective chemical dissolution was found at an 8:2 ratio of PAN/lignin, which was 32.42 m2g-1 with an average pore diameter of 5.02 nm. The diameter of electrospun nanofibers was also slightly reduced after selective chemical dissolution. Porous PAN nanofibers can be seen as the precursors to the production of highly porous carbon nanofibers.
  8. Abdul-Rahman NR, Mohammad KF, Ibrahim S
    Singapore Med J, 2009 Jun;50(6):e223-5.
    PMID: 19551303
    The Klippel-Trenaunay syndrome is a combination of venous and capillary malformations associated with soft tissue and/or bony limb hypertrophy, with or without lymphatic malformations. Although persistent foetal veins are rare, the persistence of the lateral marginal vein is a common association in this syndrome. It results in venous hypertension, which gives rise to venous varicosities, which are commonly seen in this syndrome. This is a case report of a 28-year-old man with Klippel-Trenaunay syndrome, with persistence of the lateral marginal vein, affecting his right lower limb. He was treated with an above-knee amputation. The amputated limb was dissected to demonstrate the anatomy of the lateral marginal vein. To the best of the authors' knowledge, the gross anatomy of the lateral marginal vein has not been previously reported.
  9. Chua LS, Abdul-Rahman N, Rosidi B, Lee CT
    Nat Prod Res, 2013 Mar;27(4-5):314-8.
    PMID: 22468741 DOI: 10.1080/14786419.2012.676552
    A water extraction method has been used to extract plant proteins from the roots of Eurycoma longifolia harvested from Perak and Pahang, Malaysia. On the basis of the spectroscopic Bradford assay, Tongkat Ali Perak and Pahang contained 0.3868 and 0.9573 mg mL(-1) of crude protein, respectively. The crude proteins were separated by one dimensional 15% sodium dodecyl sulphate polyacrylamide gel electrophoresis into two (49.8 and 5.5 kD) and four (49.8, 24.7, 21.1 and 5.5 kD) protein spots for Tongkat Ali Perak and Pahang, respectively. Isoleucine was present in the highest concentration significantly. Both plant samples showed differences in the mineral and trace element profiles, but the minerals calcium, magnesium and potassium were present in the highest concentration. The highly concerned toxic metals such as arsenic and lead were not detected.
  10. Abdul Rahman NH, Chieng BW, Ibrahim NA, Abdul Rahman N
    Polymers (Basel), 2017 Nov 07;9(11).
    PMID: 30965890 DOI: 10.3390/polym9110588
    The aim was to explore the utilization of tea leaf waste fibers (TLWF) as a source for the production of cellulose nanocrystals (CNC). TLWF was first treated with alkaline, followed by bleaching before being hydrolyzed with concentrated sulfuric acid. The materials attained after each step of chemical treatments were characterized and their chemical compositions were studied. The structure analysis was examined by Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD). From FTIR analysis, two peaks at 1716 and 1207 cm-1-which represent C=O stretching and C⁻O stretching, respectively-disappeared in the spectra after the alkaline and bleaching treatments indicated that hemicellulose and lignin were almost entirely discarded from the fiber. The surface morphology of TLWF before and after chemical treatments was investigated by scanning electron microscopy (SEM) while the dimension of CNC was determined by transmission electron microscopy (TEM). The extraction of CNC increased the surface roughness and the crystallinity index of fiber from 41.5% to 83.1%. Morphological characterization from TEM revealed the appearance of needle-like shaped CNCs with average diameter of 7.97 nm. The promising results from all the analyses justify TLWF as a principal source of natural materials which can produce CNC.
  11. Nasran HS, Mohd Yusof H, Halim M, Abdul Rahman N
    Molecules, 2020 Jun 04;25(11).
    PMID: 32512825 DOI: 10.3390/molecules25112618
    Anthracnose is a fungal disease causing major losses in crop production. Chemical fungicides widely used in crop plantations to combat fungal infections can be a threat to the environment and humans in the long term. Recently, biofungicides have gained much interest as an alternative to chemical fungicides due to their environmentally friendly nature. Biofungicide products in powder form can be formulated using the freeze-drying technique to provide convenient storage. Protective agent formulation is needed in maintaining the optimal viable cells of biofungicide products. In this study, 8.10 log colony-forming unit (CFU)/mL was the highest cell viability of Paenibacillus polymyxa Kp10 at 22 h during incubation. The effects of several selected protective agents on the viability of P. polymyxa Kp10 after freeze-drying were studied. Response surface methodology (RSM) was used for optimizing formulation for the protective agents. The combination of lactose (10% w/v), skim milk (20% w/v), and sucrose (27.5% w/v) was found to be suitable for preserving P. polymyxa Kp10 during freeze-drying. Further, P. polymyxa Kp10 demonstrated the ability to inhibit fungal pathogens, Colletotrichum truncatum and C. gloeosporioides, at 60.18% and 66.52% of inhibition of radial growth, respectively.
  12. Zakaria AF, Kamaruzaman S, Abdul Rahman N, Yahaya N
    Polymers (Basel), 2022 Dec 16;14(24).
    PMID: 36559892 DOI: 10.3390/polym14245524
    Water pollution issues, particularly those caused by heavy metal ions, have been significantly growing. This paper combined biopolymers such as sodium alginate (SA) and β-cyclodextrin (β-CD) to improve adsorption performance with the help of calcium ion as the cross-linked agent. Moreover, the addition of carbon nanotubes (CNTs) into the hybrid hydrogel matrix was examined. The adsorption of nickel(II) was thoroughly compared between pristine sodium alginate/β-cyclodextrin (SA-β-CD) and sodium alginate/β-cyclodextrin immobilized carbon nanotubes (SA-β-CD/CNTs) hydrogel. Both hydrogels were characterized by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) spectral analysis, field emission scanning electron microscopy (FESEM), electron dispersive spectroscopy (EDX), thermogravimetric analysis (TGA) and Brunauer-Emmett-Teller (BET) surface area analysis. The results showed SA-β-CD/CNTs hydrogel exhibits excellent thermal stability, high specific surface area and large porosity compared with SA-β-CD hydrogel. Batch experiments were performed to study the effect of several adsorptive variables such as initial concentration, pH, contact time and temperature. The adsorption performance of the prepared SA-β-CD/CNTs hydrogel was comprehensively reported with maximum percentage removal of up to 79.86% for SA-β-CD/CNTs and 69.54% for SA-β-CD. The optimum adsorption conditions were reported when the concentration of Ni(II) solution was maintained at 100 ppm, pH 5, 303 K, and contacted for 120 min with a 1000 mg dosage. The Freundlich isotherm and pseudo-second order kinetic model are the best fits to describe the adsorption behavior. A thermodynamic study was also performed. The probable interaction mechanisms that enable the successful binding of Ni(II) on hydrogels, including electrostatic attraction, ion exchange, surface complexation, coordination binding and host-guest interaction between the cationic sites of Ni(II) on both SA-β-CD and SA-β-CD/CNTs hydrogel during the adsorption process, were discussed. The regeneration study also revealed the high efficiency of SA-β-CD/CNTs hydrogel on four successive cycles compared with SA-β-CD hydrogel. Therefore, this work signifies SA-β-CD/CNTs hydrogel has great potential to remove Ni(II) from an aqueous environment compared with SA-β-CD hydrogel.
  13. Allison SD, AdeelaYasid N, Shariff FM, Abdul Rahman N
    J Microbiol Biotechnol, 2024 Feb 28;34(2):436-456.
    PMID: 38044750 DOI: 10.4014/jmb.2306.06050
    Several thermostable proteases have been identified, yet only a handful have undergone the processes of cloning, comprehensive characterization, and full exploitation in various industrial applications. Our primary aim in this study was to clone a thermostable alkaline protease from a thermophilic bacterium and assess its potential for use in various industries. The research involved the amplification of the SpSKF4 protease gene, a thermostable alkaline serine protease obtained from the Geobacillus thermoglucosidasius SKF4 bacterium through polymerase chain reaction (PCR). The purified recombinant SpSKF4 protease was characterized, followed by evaluation of its possible industrial applications. The analysis of the gene sequence revealed an open reading frame (ORF) consisting of 1,206 bp, coding for a protein containing 401 amino acids. The cloned gene was expressed in Escherichia coli. The molecular weight of the enzyme was measured at 28 kDa using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The partially purified enzyme has its highest activity at a pH of 10 and a temperature of 80°C. In addition, the enzyme showed a half-life of 15 h at 80°C, and there was a 60% increase in its activity at 10 mM Ca2+ concentration. The activity of the protease was completely inhibited (100%) by phenylmethylsulfonyl fluoride (PMSF); however, the addition of sodium dodecyl sulfate (SDS) resulted in a 20% increase in activity. The enzyme was also stable in various organic solvents and in certain commercial detergents. Furthermore, the enzyme exhibited strong potential for industrial use, particularly as a detergent additive and for facilitating the recovery of silver from X-ray film.
  14. Mamat Yusof MN, Ch'ng ES, Radhiah Abdul Rahman N
    Cancers (Basel), 2022 Nov 14;14(22).
    PMID: 36428683 DOI: 10.3390/cancers14225593
    The discovery that ameloblastoma has a high mutation incidence of BRAF V600E may enable a better investigation of pathophysiology. However, there is inconsistent evidence regarding this mutation occurrence and its association with clinical information. This systematic review and meta-analysis aim to pool the overall mutation prevalence of BRAF V600E in reported ameloblastoma cases and to determine its association with patient demographic and clinicopathological features. Following the PRISMA guidelines, a comprehensive article search was conducted through four databases (Scopus, Google Scholar, PubMed, and Web of Science). Seventeen articles between 2014 and 2022 met the inclusion criteria with 833 ameloblastoma cases. For each included study, the significance of BRAF V600E on the outcome parameters was determined using odd ratios and 95% confidence intervals. Meta-analysis prevalence of BRAF V600E in ameloblastoma was 70.49%, and a significant meta-analysis association was reported for those younger than 54 years old and in the mandible. On the contrary, other factors, such as sex, histological variants, and recurrence, were insignificant. As a result of the significant outcome of BRAF V600E mutation in ameloblastoma pathogenesis, targeted therapy formulation can be developed with this handful of evidence.
  15. Yehye WA, Abdul Rahman N, Alhadi AA, Khaledi H, Weng NS, Ariffin A
    Molecules, 2012 Jun 25;17(7):7645-65.
    PMID: 22732881 DOI: 10.3390/molecules17077645
    A computer-aided predictions of antioxidant activities were performed with the Prediction Activity Spectra of Substances (PASS) program. Antioxidant activity of compounds 1, 3, 4 and 5 were studied using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and lipid peroxidation assays to verify the predictions obtained by the PASS program. Compounds 3 and 5 showed more inhibition of DPPH stable free radical at 10⁻⁴ M than the well-known standard antioxidant, butylated hydroxytoluene (BHT). Compound 5 exhibited promising in vitro inhibition of Fe²⁺-induced lipid peroxidation of the essential egg yolk as a lipid-rich medium (83.99%, IC₅₀ 16.07 ± 3.51 μM/mL) compared to α-tocopherol (α-TOH, 84.6%, IC₅₀ 5.6 ± 1.09 μM/mL). The parameters for drug-likeness of these BHT analogues were also evaluated according to the Lipinski’s “rule-of-five” (RO5). All the BHT analogues were found to violate one of the Lipinski’s parameters (LogP > 5), even though they have been found to be soluble in protic solvents. The predictive polar surface area (PSA) and absorption percent (% ABS) data allow us to conclude that they could have a good capacity for penetrating cell membranes. Therefore, one can propose these new multipotent antioxidants (MPAOs) as potential antioxidants for tackling oxidative stress and lipid peroxidation processes.
  16. Abdul Rahman N, Ramli R, Abdul Rahman R, Hussaini HM, Abdul Hamid AL
    Geriatr Gerontol Int, 2010 Jan;10(1):64-9.
    PMID: 20102384 DOI: 10.1111/j.1447-0594.2009.00561.x
    Road traffic accidents are the main cause of trauma in Malaysia. It has been shown that there was an increase in admissions for trauma patients older than 60 years in the last decade. The purpose of this study was to determine the pattern of maxillofacial injuries in the geriatric patients referred to Seremban Hospital, Malaysia.
  17. Chia SL, Tan WS, Shaari K, Abdul Rahman N, Yusoff K, Satyanarayanajois SD
    Peptides, 2006 Jun;27(6):1217-25.
    PMID: 16377031
    A peptide with the sequence CTLTTKLYC has previously been identified to inhibit the propagation of Newcastle disease virus (NDV) in embryonated chicken eggs and tissue culture. NDV has been classified into two main groups: the velogenic group, and mesogenic with lentogenic strains as the other group based on its dissociation constants. In this study the peptide, CTLTTKLYC, displayed on the pIII protein of a filamentous M13 phage was synthesized and mutated in order to identify the amino acid residues involved in the interactions with NDV. Mutations of C1 and K6 to A1 and A6 did not affect the binding significantly, but substitution of Y8 with A8 dramatically reduced the interaction. This suggests that Y8 plays an important role in the peptide-virus interaction. The three-dimensional structure of the peptide was determined using circular dichroism (CD), nuclear magnetic resonance (NMR), and molecular modeling. The peptide exhibited two possible conformers. One that consists of consecutive beta-turns around T2-L3-T4-T5 and K6-L7-Y8-C9. The other conformer exhibited a beta-hairpin bend type of structure with a bend around L3-T4-T5-K6.
  18. Mohd Yusof H, Abdul Rahman N, Mohamad R, Hasanah Zaidan U, Samsudin AA
    Animals (Basel), 2021 Jul 14;11(7).
    PMID: 34359225 DOI: 10.3390/ani11072093
    Since the emergence of multidrug-resistant bacteria in the poultry industry is currently a serious threat, there is an urgent need to develop a more efficient and alternative antibacterial substance. Zinc oxide nanoparticles (ZnO NPs) have exhibited antibacterial efficacy against a wide range of microorganisms. Although the in vitro antibacterial activity of ZnO NPs has been studied, little is known about the antibacterial mechanisms of ZnO NPs against poultry-associated foodborne pathogens. In the present study, ZnO NPs were successfully synthesized using Lactobacillus plantarum TA4, characterized, and their antibacterial potential against common avian pathogens (Salmonella spp., Escherichia coli, and Staphylococcus aureus) was investigated. Confirmation of ZnO NPs by UV-Visual spectroscopy showed an absorption band center at 360 nm. Morphologically, the synthesized ZnO NPs were oval with an average particle size of 29.7 nm. Based on the dissolution study of Zn2+, ZnO NPs released more ions than their bulk counterparts. Results from the agar well diffusion assay indicated that ZnO NPs effectively inhibited the growth of the three poultry-associated foodborne pathogens. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were assessed using various concentrations of ZnO NPs, which resulted in excellent antibacterial activity as compared to their bulkier counterparts. S. aureus was more susceptible to ZnO NPs compared to the other tested bacteria. Furthermore, the ZnO NPs demonstrated substantial biofilm inhibition and eradication. The formation of reactive oxygen species (ROS) and cellular material leakage was quantified to determine the underlying antibacterial mechanisms, whereas a scanning electron microscope (SEM) was used to examine the morphological changes of tested bacteria treated with ZnO NPs. The findings suggested that ROS-induced oxidative stress caused membrane damage and bacterial cell death. Overall, the results demonstrated that ZnO NPs could be developed as an alternative antibiotic in poultry production and revealed new possibilities in combating pathogenic microorganisms.
  19. Abdul Rahman N', Nurumal MS, Awang MS, Mohd Shah ANS
    Australas Emerg Care, 2020 Dec;23(4):240-246.
    PMID: 32713770 DOI: 10.1016/j.auec.2020.06.005
    INTRODUCTION: Emergency departments (EDs) routinely provide discharge instructions due to a large number of patients with mild traumatic brain injury (mTBI) being discharged home directly from ED. This study aims to evaluate the quality of available mTBI discharge instructions provided by EDs of Malaysia government hospitals.

    METHODS: All 132 EDs were requested for a copy of written discharge instruction given to the patients. The mTBI discharge instructions were evaluated using the Patient Education Materials Assessment-Printable Tool (PEMAT-P) for understandability and actionability. Readability was measured using an online readability tool of Malay text. The content was compared against the discharge instructions recommended by established guidelines.

    RESULTS: 49 articles were eligible for the study. 26 of the articles met the criteria of understandability, and 3 met the criteria for actionability. The average readability level met the ability of average adult. Most of the discharge instructions focused on emergency symptoms, and none contained post-concussion features.

    CONCLUSION: Majority of the discharge instructions provided were appropriate for average people to read but difficult to understand and act upon. Important information was neglected in most discharge instructions. Thus, revision and future development of mTBI discharge instruction should consider health literacy demand and cognitive ability to process such information.

  20. Dabbagh A, Abu Kasim NH, Yeong CH, Wong TW, Abdul Rahman N
    J Aerosol Med Pulm Drug Deliv, 2018 06;31(3):139-154.
    PMID: 29022837 DOI: 10.1089/jamp.2017.1382
    Targeted delivery of chemotherapeutics through the respiratory system is a potential approach to improve drug accumulation in the lung tumor, while decreasing their negative side effects. However, elimination by the pulmonary clearance mechanisms, including the mucociliary transport system, and ingestion by the alveolar macrophages, rapid absorption into the blood, enzymatic degradation, and low control over the deposition rate and location remain the main complications for achieving an effective pulmonary drug delivery. Therefore, particle-based delivery systems have emerged to minimize pulmonary clearance mechanisms, enhance drug therapeutic efficacy, and control the release behavior. A successful implementation of a particle-based delivery system requires understanding the influential parameters in terms of drug carrier, inhalation technology, and health status of the patient's respiratory system. This review aims at investigating the parameters that significantly drive the clinical outcomes of various particle-based pulmonary delivery systems. This should aid clinicians in appropriate selection of a delivery system according to their clinical setting. It will also guide researchers in addressing the remaining challenges that need to be overcome to enhance the efficiency of current pulmonary delivery systems for aerosols.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links