Displaying all 4 publications

Abstract:
Sort:
  1. Jayaprakasam S, Abdul Rahim SK, Leow CY, Ting TO
    PLoS One, 2017;12(5):e0175510.
    PMID: 28464000 DOI: 10.1371/journal.pone.0175510
    Collaborative beamforming (CBF) with a finite number of collaborating nodes (CNs) produces sidelobes that are highly dependent on the collaborating nodes' locations. The sidelobes cause interference and affect the communication rate of unintended receivers located within the transmission range. Nulling is not possible in an open-loop CBF since the collaborating nodes are unable to receive feedback from the receivers. Hence, the overall sidelobe reduction is required to avoid interference in the directions of the unintended receivers. However, the impact of sidelobe reduction on the capacity improvement at the unintended receiver has never been reported in previous works. In this paper, the effect of peak sidelobe (PSL) reduction in CBF on the capacity of an unintended receiver is analyzed. Three meta-heuristic optimization methods are applied to perform PSL minimization, namely genetic algorithm (GA), particle swarm algorithm (PSO) and a simplified version of the PSO called the weightless swarm algorithm (WSA). An average reduction of 20 dB in PSL alongside 162% capacity improvement is achieved in the worst case scenario with the WSA optimization. It is discovered that the PSL minimization in the CBF provides capacity improvement at an unintended receiver only if the CBF cluster is small and dense.
  2. Eteng AA, Abdul Rahim SK, Leow CY, Chew BW, Vandenbosch GA
    PLoS One, 2016;11(2):e0148808.
    PMID: 26890878 DOI: 10.1371/journal.pone.0148808
    Q-factor constraints are usually imposed on conductor loops employed as proximity range High Frequency Radio Frequency Identification (HF-RFID) reader antennas to ensure adequate data bandwidth. However, pairing such low Q-factor loops in inductive energy transmission links restricts the link transmission performance. The contribution of this paper is to assess the improvement that is reached with a two-stage design method, concerning the transmission performance of a planar square loop relative to an initial design, without compromise to a Q-factor constraint. The first stage of the synthesis flow is analytical in approach, and determines the number and spacing of turns by which coupling between similar paired square loops can be enhanced with low deviation from the Q-factor limit presented by an initial design. The second stage applies full-wave electromagnetic simulations to determine more appropriate turn spacing and widths to match the Q-factor constraint, and achieve improved coupling relative to the initial design. Evaluating the design method in a test scenario yielded a more than 5% increase in link transmission efficiency, as well as an improvement in the link fractional bandwidth by more than 3%, without violating the loop Q-factor limit. These transmission performance enhancements are indicative of a potential for modifying proximity HF-RFID reader antennas for efficient inductive energy transfer and data telemetry links.
  3. Sabran MI, Abdul Rahim SK, Leow CY, Soh PJ, Chew BW, Vandenbosch GA
    PLoS One, 2017;12(2):e0172162.
    PMID: 28192504 DOI: 10.1371/journal.pone.0172162
    This paper presents a compact circularly polarized (CP) antenna with an integrated higher order harmonic rejection filter. The proposed design operates within the ISM band of 2.32 GHz- 2.63 GHz and is suitable for example for wireless power transfer applications. Asymmetrical truncated edges on a square ring create a defected ground structure to excite the CP property, simultaneously realizing compactness. It offers a 50.5% reduced patch area compared to a conventional design. Novel stubs and slot shapes are integrated in the transmission line to reduce higher (up to the third) order harmonics. The proposed prototype yields a -10 dB reflection coefficient (S11) impedance bandwidth of 12.53%, a 3 dB axial ratio bandwidth of 3.27%, and a gain of 5.64 dBi. Measurements also show good agreement with simulations.
  4. Soliman MM, Islam MT, Alam T, Misran N, Abdul Rahim SK, Alzamil A, et al.
    Nanoscale, 2023 Aug 10;15(31):12972-12994.
    PMID: 37477438 DOI: 10.1039/d3nr01941a
    Developing a meta-structure with near-unity absorbance in the visible and infrared spectra for solar energy harvesting, photodetection, thermal imaging, photo-trapping, and optical communications is a long-term research challenge. This research presents a four-layered (insulator-metal-insulator-metal) meta-structure unit cell that showed a peak absorbance of 99.99% at 288-300 nm and the average absorbance of 99.18% over the 250-2000 nm wavelength range in TE and TM modes, respectively. The symmetric pattern of the resonator layer shows polarization insensitivity with an average absorption of 99.18% in both TE and TM modes. Furthermore, the proposed design shows a wide incident angle stability up to ≤60 degrees in both TE and TM modes. The proposed structure also exhibits negative index properties at 288-300 nm and 1000-2000 nm, respectively. The negative index properties of the proposed design generate an anti-parallel surface current flow in the ground and resonator layers, which induces magnetic and electric field resonance and increases absorption. The performance of the proposed design is further validated by the interference theory model and a zero value for the polarization conversion ratio (PCR). The electric field E, magnetic field H, and current distribution are analyzed to explain the absorption mechanism of the proposed meta-structure unit cell. It also exhibits the highest photo-thermal conversion efficiency of 99.11%, demonstrating the viability of the proposed design as a solar absorber. The proposed design promises potentially valuable applications such as solar energy harvesting, photodetection, thermal imaging, photo-trapping, and optical communications because of its decent performance.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links