Displaying all 6 publications

Abstract:
Sort:
  1. Abd Rahman NA, Li S, Schmid S, Shaharudin S
    Phys Ther Sport, 2023 Jan;59:60-72.
    PMID: 36516512 DOI: 10.1016/j.ptsp.2022.11.011
    Low back pain (LBP) can result in increased direct medical and non-medical costs to patients, employers, and health care providers. This systematic review aimed to provide a better understanding of the biomechanical factors associated with chronic non-specific LBP in adults. SCOPUS, ScienceDirect, MEDLINE, and Web of Science databases were searched. In total, 26 studies were included and significant differences were noted between healthy controls and LBP patients in various motion. Biomechanical factors among adults with non-specific LBP were altered and differed as compared to healthy controls in various motion might be to compensate the pain during those motions. This review highlighted the biomechanical differences across those with non-specific LBP and healthy adults. Both groups showed a similar level of pain during functional tasks but LBP patients suffered from a moderate level of disability. Future studies should not rely on questionnaire-based pain scale only. The biomechanical factors summarized in this review can be used to diagnose non-specific LBP accurately, and as modifiable targets for exercise-based intervention.
  2. Abd Rahman NA, Mohamed Sahari KS, Baharuddin MZ
    Appl Radiat Isot, 2023 Oct;200:110968.
    PMID: 37544032 DOI: 10.1016/j.apradiso.2023.110968
    The sensor coverage problem aims to maximize the coverage of a target area with a fixed or minimum number of sensors. However, the sampling point coverage for radiation mapping has yet to be specified or adequately established. When dealing with unknown radiation fields, it is critical that the placements of sampling points will ensure that all hotspots are detected and accurately identified. Therefore, the concept of coverage and detection limit for a sampling point in radiation mapping is proposed in this paper. The proposed concept relates the angular dependency of the radiation measurement instruments with the detector detection limit or minimum detectable amount (MDA). To demonstrate the implementation, the concept is used to compute the sensitivity of the radiation map for coverage radiation mapping with mobile robot. Simulation results showed that hotspots with intensity equal to or above the sampling point detection limit were successfully detected regardless of their position within the coverage circle. Moreover, the experimental results of coverage radiation mapping showed that the concept can be used to compute the resolution of the radiation map. This will help the user to efficiently configure the appropriate grid size that suit their mapping situation and requirements.
  3. Lu J, Abd Rahman NA, Wyon M, Shaharudin S
    PLoS One, 2024;19(4):e0301236.
    PMID: 38640093 DOI: 10.1371/journal.pone.0301236
    BACKGROUND: Fundamental physical functions such as postural control and balance are vital in preserving everyday life, affecting an individual's quality of life. Dance is a physical activity that offers health advantages across various life stages. Nevertheless, the effects of dance interventions on physical function, postural control, and quality of life among older adults have remained underexplored. The review aimed to examine the strength of evidence for dance interventions on physical function and quality of life among middle-aged and older adults.

    METHODS: A systematic review was conducted across four databases (PubMed, Cochrane Library, Web of Science, and Medline), focusing on studies involving more than four weeks of dance interventions. MeSH terms [dance or dance intervention or dance rehabilitation or dance movement] and [motor function or functional capacity or postural control or functional mobility or mobility or postural balance or balance or flexibility or gait] and [well-being or quality of life or life satisfaction] were utilized in the search. This review was registered in the PROSPERO database (CRD42023422857). Included studies were assessed using the Cochrane Risk of Bias.

    RESULTS: The search revealed 885 studies, and 16 met the inclusion criteria. The effects of various dance genres on physical functions and quality of life were compared. Most studies showed that dance intervention improved physical function, balance, postural control and quality of life. Dance intervention showed a high level of adherence compared to physiotherapy, self-care, conventional therapy, and aerobic and resistance exercise.

    CONCLUSION: In terms of improving physical function and quality of life, structured dance is a safe and relatively effective alternative to exercise. Note the effect of movement selection and intensity in the dance interventions. Dance with music may increase participants' interest, encouraging more physical activity among middle-aged and older adults.

  4. Abd Rahman NA, Mohd Yasin MN, Ibrahim IM, Jusoh M, Noor SK, Ekscalin Emalda Mary MR, et al.
    Micromachines (Basel), 2022 Dec 08;13(12).
    PMID: 36557477 DOI: 10.3390/mi13122178
    A comprehensive review on recent developments and applications of circularly polarized (CP) dielectric resonator antennas (DRAs) is proposed in this paper. DRAs have received more considerations in various applications due to their advantages such as wide bandwidth, high gain, high efficiency, low losses, and low profile. A broad justification for circular polarization and DRAs is stated at the beginning of the review. Various techniques such as single feed, dual, or multiple feeds used by different researchers for generating circular polarization in DRAs are briefly studied in this paper. Multiple-input-multiple-output (MIMO) CP DRAs, which can increase channel capacity, link reliability, and data rate, have also been analyzed. Additionally, innovative design solutions for broadening the circular polarization bandwidth and reducing mutual coupling are studied. Several applications of DRA are also discussed comprehensively. This paper finishes with concluding remarks.
  5. Abd Rahman NA, Noor SK, Ibrahim IM, Yasin MNM, Ismail AM, Osman MN, et al.
    Micromachines (Basel), 2023 Apr 13;14(4).
    PMID: 37421074 DOI: 10.3390/mi14040841
    This paper presents the generation of orbital angular momentum (OAM) vortex waves with mode +1 using dielectric resonator antenna (DRA) array. The proposed antenna was designed and fabricated using FR-4 substrate to generate OAM mode +1 at 3.56 GHz (5G new radio band). The proposed antenna consists of 2 × 2 rectangular DRA array, a feeding network, and four cross slots etched on the ground plane. The proposed antenna succeeded in generating OAM waves; this was confirmed by the measured radiation pattern (2D polar form), simulated phase distribution, and intensity distribution. Moreover, mode purity analysis was carried out to verify the generation of OAM mode +1, and the purity obtained was 53.87%. The antenna operates from 3.2 to 3.66 GHz with a maximum gain of 7.3 dBi. Compared with previous designs, this proposed antenna is low-profile and easy to fabricate. In addition, the proposed antenna has a compact structure, wide bandwidth, high gain, and low losses, thus meeting the requirements of 5G NR applications.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links