Displaying all 6 publications

Abstract:
Sort:
  1. Reshidan NH, Abd Muid S, Mamikutty N
    BMC Complement Altern Med, 2019 Aug 28;19(1):232.
    PMID: 31462242 DOI: 10.1186/s12906-019-2627-0
    BACKGROUND: Metabolic syndrome is a non-communicable disease inclusive of risk factors such as central obesity, hypertension, hyperglycaemia and dyslipidaemia. In this present study, we investigated the ability of Pandanus amaryllifolius (PA) leaf water extract to reverse the cluster of diseases in an established rat model induced by fructose in drinking water.

    METHODS: Thirty healthy adult male Wistar rats (150-180 g) were randomly divided into three groups which included control (C; n = 6), PA extract (PAE; n = 6) and Metabolic Syndrome (MetS; n = 18). Food and fluid were given ad libitum for 8 weeks. These groups differed in fluid intake whereby rats received tap water, 10% of PA leaf water extracts and 20% of fructose in drinking water in group C, PAE and MetS, respectively. After 8 weeks, the MetS group was further subdivided into three subgroups namely MetS1 (n = 6), MetS2 (n = 6) and MetS3 (n = 6). The C, PAE and MetS1 were sacrificed. MetS1 group was sacrificed as the control for metabolic syndrome. MetS2 and MetS3 groups were treated with only tap water and 10% of PA leaf water extract respectively for another 8 weeks. The parameters for physiological and metabolic changes such as obesity, hypertension, hyperglycaemia, dyslipidaemia, and inflammatory biomarkers (NFκβ p65, TNFα, leptin and adiponectin) were measured.

    RESULTS: The intake of 20% of fructose in drinking water induced full blown of metabolic syndrome symptoms, including obesity, hypertension, dyslipidaemia and hyperglycaemia in male Wistar rats. Subsequently, treatment with PA leaf water extract improved obesity parameters including BMI, abdominal adipose tissue deposition and adipocytes size, systolic and diastolic blood pressures, fasting plasma glucose, triglycerides, high density lipoprotein with neutral effects on inflammatory biomarkers.

    CONCLUSIONS: Administration of PA in metabolic syndrome rat model attenuates most of the metabolic syndrome symptoms as well as improves obesity. Therefore, PA which is rich in total flavonoids and total phenolic acids can be suggested as a useful dietary supplement to improve metabolic syndrome components induces by fructose.

  2. Zulkapli R, Yusof MYPM, Abd Muid S, Wang SM, Firus Khan AY, Nawawi H
    Int J Environ Res Public Health, 2022 Oct 08;19(19).
    PMID: 36232177 DOI: 10.3390/ijerph191912878
    A systematic review was performed to identify all the related publications describing PCSK9 and atherogenesis biomarkers attenuation associated with a natural product and plant bioactive compounds in in vitro studies. This review emphasized the imprecision and quality of the included research rather than the detailed reporting of the results. Literature searches were conducted in Scopus, PubMed, and Science Direct from 2003 until 2021, following the Cochrane handbook. The screening of titles, abstracts, and full papers was performed by two independent reviewers, followed by data extraction and validity. Study quality and validity were assessed using the Imprecision Tool, Model, and Marker Validity Assessment that has been developed for basic science studies. A total of 403 articles were identified and 31 of those that met the inclusion criteria were selected. 13 different atherogenesis biomarkers in relation to PCSK9 were found, and the most studied biomarkers are LDLR, SREBP, and HNF1α. In terms of quality, our review suggests that the basic science study in investigating atherogenesis biomarkers is deficient in terms of imprecision and validity.
  3. Harun NH, Froemming GRA, Mohd Ismail A, Nawawi H, Mokhtar SS, Abd Muid S
    Int J Mol Sci, 2022 Nov 23;23(23).
    PMID: 36498945 DOI: 10.3390/ijms232314616
    Low mineralization activity by human osteoblast cells (HOBs) indicates abnormal bone remodeling that potentially leads to osteoporosis. Oxidation, the most prominent form of high-density lipoprotein (HDL) modification, is suggested to affect bone mineralization through the inflammatory pathway. Adiponectin, which possesses anti-inflammatory activity, is postulated to have the ability to suppress the detrimental effects of oxidized HDL (oxHDL). This study aimed to investigate the effects of HDL before and after oxidation on markers of mineralization and inflammation. The protective effects of adiponectin on demineralization and inflammation induced by oxHDL were also investigated. OxHDL at 100 µg/mL protein had the highest inhibitory effect on mineralization, followed by lower calcium incorporation. OxHDL also had significantly lower expression of a mineralization marker (COL1A2) and higher expression of inflammatory markers (IL-6, TNF-α, and RELA proto-oncogene, NF-κβ (p65)) compared to the unstimulated control group. These findings suggest that oxHDL reduces the mineralization activity of HOBs by increasing the expression of inflammatory markers. Interestingly, co-incubation of adiponectin and oxHDL in HOBs resulted in higher expression of mineralization markers (ALPL, COL1A2, BGLAP, and RUNX2) and significantly reduced all targeted inflammatory markers compared to the oxHDL groups. On the contrary, HDL increased the expression of mineralization markers (COL1A2 and STAT-3) and exhibited lower expression of inflammatory cytokines (IL-6 and TNF-α), proving the protective effect of HDL beyond the reverse cholesterol transport activity.
  4. Abd Rahim IN, Mohd Kasim NA, Omar E, Abd Muid S, Nawawi H
    Front Biosci (Landmark Ed), 2023 Apr 06;28(4):70.
    PMID: 37114545 DOI: 10.31083/j.fbl2804070
    BACKGROUND: Various methods were used to induce atherosclerosis in rabbits. One of the most common methods used is high-cholesterol diet (HCD) feeding. However, the exact amount and duration of HCD feeding to induce early and established atherosclerosis in New Zealand white rabbits (NZWR) continue to be debated among researchers. Therefore, this study aims to evaluate the effectiveness of 1% HCD feeding in inducing early and established atherosclerosis lesions in NZWR.

    METHODS: A total of 50 g/kg/day of 1% HCD was fed to three to four months old male rabbits weighing 1.8 to 2.0 kg for four and eight weeks to induce early and established atherosclerosis respectively. The body weight and lipid profile were measured at baseline and post-HCD intervention. Following euthanasia, the aorta was excised and prepared for histology and immunohistochemical analysis to confirm the stages of atherosclerosis.

    RESULTS: The mean body weight of the rabbits in early and established atherosclerosis groups increased significantly up to 17.5% (p = 0.026) and 19.75% (p = 0.019) respectively compared to baseline. The total cholesterol level dramatically elevated up to 13-fold (p = 0.005) and 38-fold (p = 0.013) compared to baseline, after four and eight weeks of 1% HCD feeding respectively. The low-density lipoprotein level significantly increased up to 42-fold (p = 0.006) and 128-fold (p = 0.011) compared to baseline, after four and eight weeks of 1% HCD feeding respectively. Rabbits fed with four and eight weeks 1% HCD significantly developed 5.79% (p = 0.008) and 21.52% (p = 0.008) aortic lesion areas compared to the control group. Histological evaluation in the aorta showed accumulation of foam cells in early atherosclerosis group and formation of fibrous plaque and lipid core in the established atherosclerosis group. Rabbits fed with eight weeks HCD showed higher tissue expressions of ICAM-1, VCAM-1, e-selectin, IL-6, IL-8, NF-κBp65, and MMP-12 compared to four weeks of HCD intervention.

    CONCLUSIONS: A total of 50 g/kg/day of 1% HCD for four and eight weeks is sufficient to induce early and established atherosclerosis in NZWR respectively. The consistent results through this method could facilitate researchers in inducing early and established atherosclerosis in NZWR.

  5. Mohd Ariff A, Abu Bakar NA, Abd Muid S, Omar E, Ismail NH, Ali AM, et al.
    BMC Complement Med Ther, 2020 Feb 17;20(1):56.
    PMID: 32066426 DOI: 10.1186/s12906-020-2844-6
    BACKGROUND: Ficus deltoidea (FD) has been shown to have antidiabetic, anti-inflammatory, antinociceptive and antioxidant properties. However, its effects on key events in the pathogenesis of atherosclerosis are unknown.

    AIM: To investigate the endothelial activation, inflammation, monocyte-endothelial cell binding and oxidative stress effects of four FD varieties.

    METHODS: Human coronary artery endothelial cells (HCAEC) were incubated with different concentrations of aqueous ethanolic extracts of FD var. trengganuensis (FDT), var. kunstleri (FDK), var. deltoidea (FDD) and var. intermedia (FDI), together with LPS. Protein and gene expression of vascular cell adhesion molecule-1 (VCAM-1), intercellular cell adhesion molecule-1 (ICAM-1), endothelial-leukocyte adhesion molecule-1 (E-selectin), interleukin-6 (IL-6), Nuclear factor-κB (NF-κB) p50 and p65 and endothelial nitric oxide synthase (eNOS) were measured using ELISA and QuantiGene plex, respectively. Adhesion of monocyte to HCAEC and formation of reactive oxygen species (ROS) were detected by Rose Bengal staining and 2'-7'-dichlorofluorescein diacetate (DCFH-DA) assay.

    RESULTS: FDK exhibited the highest inhibition of biomarkers in relation to endothelial activation and inflammation, second in reducing monocyte binding (17.3%) compared to other varieties. FDK (25.6%) was also the most potent at decreasing ROS production.

    CONCLUSION: FD has anti-atherogenic effects, possibly mediated by NF-κB and eNOS pathways; with FDK being the most potent variety. It is potentially beneficial in mitigating atherogenesis.

  6. Dzulkharnien NSF, Rohani R, Tan Kofli N, Mohd Kasim NA, Abd Muid S, Patrick M, et al.
    Bioorg Chem, 2024 Sep;150:107513.
    PMID: 38905888 DOI: 10.1016/j.bioorg.2024.107513
    The interaction of green zinc oxide nanoparticles (ZnO NPs) with bacterial strains are still scarcely reported. This work was conducted to study the green-one-pot-synthesized ZnO NPs from the Aloe Vulgarize (AV) leaf peel extract assisted with different sonication techniques followed by the physicochemical, biological activities and molecular docking studies. The NPs structure was analyzed using FTIR, UV-vis and EDX. The morphology, particle size and crystallinity of ZnO NPs were identified using FESEM and XRD. It was found that the formed flower-like structure with sharp edge and fine size of particulates in ZnO NPs/AV could enhance the bacterial inhibition. The minimum inhibitory concentration (MIC) for all the tested bacterial strains is at 3.125 µg/ml and the bacterial growth curve are dependent on the ZnO NPs dosage. The results of disc diffusion revealed that the ZnO NPs/AV possess better antibacterial effect with bigger ZOI due to the presence of AV active ingredient. The molecular docking between active ingredients of AV in the NPs with the protein of IFCM and 1MWU revealed that low binding energy (Ebind = -6.56 kcal/mol and -8.99 kcal/mol, respectively) attributes to the excessive hydrogen bond from AV that highly influenced their interaction with the amino acid of the selected proteins. Finally, the cytotoxicity test on the biosynthesized ZnO NPs with concentration below 20 µg/ml are found nontoxic on the HDF cell. Overall, ZnO NPs/20 % AV (probe sonication) is considered as the best synthesis option due to its efficient one-pot method, short sonication time but own the best antibacterial effect.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links