Displaying publications 1 - 20 of 23 in total

Abstract:
Sort:
  1. Yong WK, Abd Malek SN
    PMID: 25949267 DOI: 10.1155/2015/921306
    We investigate induction of apoptosis by xanthohumol on Ca Ski cervical cancer cell line. Xanthohumol is a prenylated chalcone naturally found in hop plants, previously reported to be an effective anticancer agent in various cancer cell lines. The present study showed that xanthohumol was effective to inhibit proliferation of Ca Ski cells based on IC50 values using sulforhodamine B (SRB) assay. Furthermore, cellular and nuclear morphological changes were observed in the cells using phase contrast microscopy and Hoechst/PI fluorescent staining. In addition, 48-hour long treatment with xanthohumol triggered externalization of phosphatidylserine, changes in mitochondrial membrane potential, and DNA fragmentation in the cells. Additionally, xanthohumol mediated S phase arrest in cell cycle analysis and increased activities of caspase-3, caspase-8, and caspase-9. On the other hand, Western blot analysis showed that the expression levels of cleaved PARP, p53, and AIF increased, while Bcl-2 and XIAP decreased in a dose-dependent manner. Taken together, these findings indicate that xanthohumol-induced cell death might involve intrinsic and extrinsic apoptotic pathways, as well as downregulation of XIAP, upregulation of p53 proteins, and S phase cell cycle arrest in Ca Ski cervical cancer cells. This work suggests that xanthohumol is a potent chemotherapeutic candidate for cervical cancer.
  2. Lay MM, Karsani SA, Mohajer S, Abd Malek SN
    PMID: 24885709 DOI: 10.1186/1472-6882-14-152
    The edible fruits of Phaleria macrocarpa (Scheff.) Boerl are widely used in traditional medicine in Indonesia. It is used to treat a variety of medical conditions such as - cancer, diabetes mellitus, allergies, liver and heart diseases, kidney failure, blood diseases, high blood pressure, stroke, various skin diseases, itching, aches, and flu. Therefore, it is of great interest to determine the biochemical and cytotoxic properties of the fruit extracts.
  3. Reddy AS, Abd Malek SN, Ibrahim H, Sim KS
    BMC Complement Altern Med, 2013 Nov 12;13:314.
    PMID: 24215354 DOI: 10.1186/1472-6882-13-314
    BACKGROUND: Alpinia scabra, locally known as 'Lengkuas raya', is an aromatic, perennial and rhizomatous herb from the family Zingiberaceae. It is a wild species which grows largely on mountains at moderate elevations in Peninsular Malaysia, but it can also survive in the lowlands like in the states of Terengganu and Northern Johor. The present study reports the cytotoxic potential of A. scabra extracts from different parts of the plant.

    METHODS: The experimental approach in the present study was based on a bioassay-guided fractionation. The crude methanol and fractionated extracts (hexane, chloroform and water) from different parts of A. scabra (leaves, rhizomes, roots and pseudo stems) were prepared prior to the cytotoxicity evaluation against human ovarian (SKOV-3) and hormone-dependent breast (MCF7) carcinoma cells. The identified cytotoxic extracts were then subjected to chemical investigations in order to identify the active ingredients. A normal human lung fibroblast cell line (MRC-5) was used to determine the specificity for cancerous cells. The cytotoxic extracts and fractions were also subjected to morphological assessment, DNA fragmentation analysis and DAPI nuclear staining.

    RESULTS: The leaf (hexane and chloroform) and rhizome (chloroform) extracts showed high inhibitory effect against the tested cells. Ten fractions (LC1-LC10) were yielded after purification of the leaf chloroform extract. Fraction LC4 which showed excellent cytotoxic activity was further purified and resulted in 17 sub-fractions (VLC1-VLC17). Sub-fraction VLC9 showed excellent cytotoxicity against MCF7 and SKOV-3 cells but not toxic against normal MRC-5 cells. Meanwhile, eighteen fractions (RC1-RC18) were obtained after purification of the rhizome chloroform extract, of which fraction RC5 showed cytotoxicity against SKOV-3 cells with high selectivity index. There were marked morphological changes when observed using phase-contrast inverted microscope, DAPI nuclear staining and also DNA fragmentations in MCF7 and SKOV-3 cells after treatment with the cytotoxic extracts and fractions which were indicative of cell apoptosis. Methyl palmitate and methyl stearate were identified in the hexane leaf extract by GC-MS analysis.

    CONCLUSIONS: The data obtained from the current study demonstrated that the cell death induced by cytotoxic extracts and fractions of A. scabra may be due to apoptosis induction which was characterized by apoptotic morphological changes and DNA fragmentation. The active ingredients in the leaf sub-fraction VLC9 and rhizome fraction RC5 may lead to valuable compounds that have the ability to kill cancer cells but not normal cells.

  4. Phang CW, Karsani SA, Sethi G, Abd Malek SN
    PLoS One, 2016;11(2):e0148775.
    PMID: 26859847 DOI: 10.1371/journal.pone.0148775
    Flavokawain C (FKC) is a naturally occurring chalcone which can be found in Kava (Piper methysticum Forst) root. The present study evaluated the effect of FKC on the growth of various human cancer cell lines and the underlying associated mechanisms. FKC showed higher cytotoxic activity against HCT 116 cells in a time- and dose-dependent manner in comparison to other cell lines (MCF-7, HT-29, A549 and CaSki), with minimal toxicity on normal human colon cells. The apoptosis-inducing capability of FKC on HCT 116 cells was evidenced by cell shrinkage, chromatin condensation, DNA fragmentation and increased phosphatidylserine externalization. FKC was found to disrupt mitochondrial membrane potential, resulting in the release of Smac/DIABLO, AIF and cytochrome c into the cytoplasm. Our results also revealed that FKC induced intrinsic and extrinsic apoptosis via upregulation of the levels of pro-apoptotic proteins (Bak) and death receptors (DR5), while downregulation of the levels of anti-apoptotic proteins (XIAP, cIAP-1, c-FlipL, Bcl-xL and survivin), resulting in the activation of caspase-3, -8 and -9 and cleavage of poly(ADP-ribose) polymerase (PARP). FKC was also found to cause endoplasmic reticulum (ER) stress, as suggested by the elevation of GADD153 protein after FKC treatment. After the cells were exposed to FKC (60μM) over 18hrs, there was a substantial increase in the phosphorylation of ERK 1/2. The expression of phosphorylated Akt was also reduced. FKC also caused cell cycle arrest in the S phase in HCT 116 cells in a time- and dose-dependent manner and with accumulation of cells in the sub-G1 phase. This was accompanied by the downregulation of cyclin-dependent kinases (CDK2 and CDK4), consistent with the upregulation of CDK inhibitors (p21Cip1 and p27Kip1), and hypophosphorylation of Rb.
  5. Fakai MI, Abd Malek SN, Karsani SA
    Life Sci, 2019 Mar 01;220:186-193.
    PMID: 30682342 DOI: 10.1016/j.lfs.2019.01.029
    AIMS: Chalepin, a naturally occurring compound isolated from Ruta angustifolia have been shown to exert a promising anticancer activity through various mechanisms. Hence, the need to investigate the apoptotic inducing ability of chalepin in MCF7 cells by various detection assays.

    MATERIALS AND METHODS: Cytotoxicity screening of chalepin against MCF7 cells was conducted using SRB assay. Apoptosis induction was examined by established morphological and biochemical assays including phase contrast and Hoechst/PI staining fluorescence microscope. Similarly, Annexin-V/FITC and TUNEL assays were conducted using flow cytometry whereas caspase-3 activity was evaluated using microplate reader.

    KEY FINDINGS: The result indicates remarkable cytotoxic activity against MCF7 cells, whereas it shows moderate cytotoxic activity against MDA-MB231 cells. Interestingly, chalepin did not present any toxicity against MRC5 normal cell line. Morphological examination using both phase contrast and fluorescence microscope displays typical apoptotic features such as membrane blebbing, DNA fragmentation, chromatin condensation and apoptotic bodies' formation following chalepin treatment against MCF7 cells at different concentration for 48 h. Apoptosis induction is significantly associated with externalisation of phosphatidylserine, and DNA fragmentation in MCF7 cells chalepin treated cells when compared with control. The protein expressions of caspase-8, 9 and cleaved PARP1 were upregulated which correlated well with increased caspase-3 activity.

    SIGNIFICANCE: From our recent findings, chalepin was able to induced apoptosis in MCF7 cells and therefore, could be evaluated further as a potential source of anticancer agent for cancer treatment such as breast cancer.

  6. Phang CW, Gandah NA, Abd Malek SN, Karsani SA
    Eur J Pharmacol, 2019 Jun 15;853:388-399.
    PMID: 31014923 DOI: 10.1016/j.ejphar.2019.04.032
    Flavokawain C (FKC), a naturally occurring chalcone, has previously been shown to inhibit the growth of colon carcinoma HCT 116 cells through induction of apoptosis and cell cycle arrest. However, the possible underlying mechanisms of cell death as a response to FKC treatment remains unclear. In this study, we performed proteomic analysis of HCT 116 cells treated with FKC to identify proteins that change in abundance. This was followed by bioinformatic analysis to predict possible associated molecular targets or pathways involved in the observed effects of FKC. A total of 35 proteins that changed in abundance (17 increased and 18 decreased) were identified through two-dimensional gel electrophoresis followed by matrix-assisted laser desorption ionisation time-of-flight mass spectrometry (MALDI-TOF/TOF MS). Using the Ingenuity Pathway Analysis (IPA), these proteins were predicted to be involved in cell death and survival, cell cycle, cellular growth and proliferation, protein synthesis, post-translational modification and amino acid metabolism by. Further analysis of the transcript levels of selected proteins using qPCR showed that some of the genes exhibited similar change of profile to that of the proteins'. Our results have provided novel insights into the potential molecular mechanisms underlying FKC-induced apoptosis or cell death in colon cancer cells.
  7. Phang CW, Abd Malek SN, Karsani SA
    Biomed Pharmacother, 2021 May;137:110846.
    PMID: 33761587 DOI: 10.1016/j.biopha.2020.110846
    Chalcones and their derivatives belong to the flavonoid family. They have been extensively studied for their anticancer properties and some have been approved for clinical use. In this study, the in vivo anti-tumor activity of flavokawain C (FKC), a naturally occurring chalcone found in Kava (Piper methysticum Forst) was evaluated in HCT 116 cells (colon carcinoma). We also attempted to identify potential biomarkers and/or molecular targets in serum with applicability in predicting treatment outcome. The anti-tumor effects and toxicity of FKC were assessed using the xenograft nude mice model. Cisplatin was used as positive control. The anti-proliferative and apoptotic activities were then evaluated in tumor tissues treated with FKC. Furthermore, two-dimensional electrophoresis (2-DE) followed by protein identification using MALDI-TOF/TOF-MS/MS was performed to compare the serum proteome profiles between healthy nude mice and nude mice bearing HCT 116 tumor treated with vehicle solution and FKC, respectively. Our results showed that FKC treatment significantly inhibited HCT 116 tumor growth. In vivo toxicity studies showed that administration of FKC did not cause damage to major organs and had no significant effect on body weight. FKC was found to induce apoptosis in tumor, and this was associated with increased expression of cleaved caspase-3 and decreased expression of Ki67 in tumor tissues. Our proteomic analysis identified five proteins that changed in abundance - Ig mu chain C region (secreted form), GRP78, hemopexin, kininogen-1 and apolipoprotein E. Overall, our findings demonstrated the potential of FKC as an anti-cancer agent for the treatment of colon carcinoma.
  8. Phang CW, Karsani SA, Abd Malek SN
    Pharmacogn Mag, 2017 Jul;13(Suppl 2):S321-S328.
    PMID: 28808400 DOI: 10.4103/0973-1296.210180
    Chalcones have been shown to exhibit anti-cancer properties by targeting multiple molecular pathways. It was, therefore, of interest to investigate flavokawain C (FKC), a naturally occurring chalcone, which can be isolated from Kava (Piper methysticum Forst) root extract. The aim of this study was to investigate the inhibitory effect of FKC on the growth of HT-29 cells and its underlying mechanism of action. Cell viability of HT-29 cells was assessed by Sulforhodamine B assay after FKC treatment. Induction of apoptosis was examined by established morphological and biochemical assays. ROS generation was determined by dichlorofluorescein fluorescence staining, and superoxide dismutase activity was measured using the spectrophotometric method. Western blotting was used to examine the changes in the protein levels. FKC markedly decreased the cell viability of HT-29 cells and the cells showed dramatic changes in cellular and nuclear morphologies with typical apoptotic features. The induction of apoptosis correlated well with the externalization of phosphatidylserine, DNA fragmentation, decreased mitochondrial membrane potential, activation of caspases, and PARP cleavage. This was associated with an increase in reactive oxygen species and a decrease in SOD activity. The protein levels of XIAP, c-IAP1, and c-IAP2 were downregulated, whereas the GADD153 was upregulated after FKC treatment. FKC induced cell cycle arrest at the G1 and G2/M phases via upregulation of p21 and p27 in a p53-independent manner. Our results provide evidence that FKC has the potential to be developed into chemotherapeutic drug for the treatment of colon adenocarcinoma.

    SUMMARY: Flavokawain C inhibited the growth of HT-29 human colon adenocarcinoma cellsFlavokawain C induced apoptosis in HT-29 cells, associated with an increase in reactive oxygen species and a decrease in SOD activityFlavokawain C induced cell cycle arrest at the G1 and G2/M phases via upregulation of p21 and p27 in HT-29 cellsHT-29 cells treated with flavokawain C caused downregulation of XIAP, c-IAP1, and c-IAP2, and upregulation of GADD153. Abbreviations used: FKC: Flavokawain C; SRB: Sulforhodamine B; ROS: Reactive oxygen species; SOD: Superoxide dismutase; PARP: Poly(ADP-ribose) polymerase; ER: Endoplasmic reticulum; IAPs: Inhibitor of apoptosis proteins; TUNEL: Transferase dUTP nick end labeling; Annexin V-FITC: Annexin V conjugated with fluorescein isothicyanate.

  9. Richardson JSM, Aminudin N, Abd Malek SN
    Pharmacogn Mag, 2017 Oct;13(Suppl 3):S489-S498.
    PMID: 29142404 DOI: 10.4103/pm.pm_13_17
    Background: Plants have been a major source of inspiration in developing novel drug compounds in the treatment of various diseases that afflict human beings worldwide. Ruta angustifolia L. Pers known locally as Garuda has been conventionally used for various medicinal purposes such as in the treatment of cancer.

    Objective: A dihydrofuranocoumarin named chalepin, which was isolated from the chloroform extract of the plant, was tested on its ability to inhibit molecular pathways of human lung carcinoma (A549) cells.

    Materials and Methods: Cell cycle analysis and caspase 8 activation were conducted using a flow cytometer, and protein expressions in molecular pathways were determined using Western blot technique.

    Results: Cell cycle analysis showed that cell cycle was arrested at the S phase. Further studies using Western blotting technique showed that cell cycle-related proteins such as cyclins, cyclin-dependent kinases (CDKs), and inhibitors of CDKs correspond to a cell cycle arrest at the S phase. Chalepin also showed inhibition in the expression of inhibitors of apoptosis proteins. Nuclear factor-kappa B (NF-κB) pathway, signal transducer and activation of transcription 3 (STAT-3), cyclooxygenase-2, and c-myc were also downregulated upon treatment with chalepin. Chalepin was found to induce extrinsic apoptotic pathway. Death receptors 4 and 5 showed a dramatic upregulation at 24 h. Analysis of activation of caspase 8 with the flow cytometer showed an increase in activity in a dose- and time-dependent manner. Activation of caspase 8 induced cleavage of BH3-interacting domain death agonist, which initiated a mitochondrial-dependent or -independent apoptosis.

    Conclusion: Chalepin causes S phase cell cycle arrest, NF-κB pathway inhibition, and STAT-3 inhibition, induces extrinsic apoptotic pathway, and could be an excellent chemotherapeutic agent.

    SUMMARY: This study reports the capacity of an isolated bioactive compound known as chalepin to suppress the nuclear factor kappa-light-chain-enhancer of activated B cells pathway, signal transducer and activation of transcription 3, and extrinsic apoptotic pathway and also its ability to arrest cell cycle in S phase. This compound was from the leaves of Ruta angustifolia L. Pers. It provides new insight on the ability of this plant in suppressing certain cancers, especially the nonsmall cell lung carcinoma according to this study. Abbreviations used: °C: Degree Celsius, ANOVA: Analysis of variance, ATCC: American Type Culture Collection, BCL-2: B-Cell CLL/Lymphoma 2, Bcl-xL: B-cell lymphoma extra-large, BH3: Bcl-2 homology 3, BID: BH3-interacting domain death agonist, BIR: Baculovirus inhibitor of apoptosis protein repeat, Caspases: Cysteinyl aspartate-specific proteases, CDK: Cyclin-dependent kinase, CO2: Carbon dioxide, CST: Cell signaling technologies, DISC: Death-inducing signaling complex, DMSO: Dimethyl sulfoxide, DNA: Deoxyribonucleic acid, DR4: Death receptor 4, DR5: Death receptor 5, E1a: Adenovirus early region 1A, ECL: Enhanced chemiluminescence, EDTA: Ethylenediaminetetraacetic acid, ELISA: Enzyme-linked immunosorbent assay, etc.: Etcetera, FADD: Fas-associated protein with death domain, FBS: Fetal bovine serum, FITC: Fluorescein isothiocyanate, G1: Gap 1, G2: Gap 2, HPLC: High-performance liquid chromatography, HRP: Horseradish peroxidase, IAPs: Inhibitor of apoptosis proteins, IC50: Inhibitory concentration at half maximal inhibitory, IKK-α: Inhibitor of nuclear factor kappa-B kinase subunit alpha, IKK-β: Inhibitor of nuclear factor kappa-B kinase subunit beta, IKK-γ: Inhibitor of nuclear factor kappa-B kinase subunit gamma, IKK: IκB kinase, IkBα: Nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha, m: Meter, M: Mitotic, mm: Millimeter, mRNA: Messenger ribonucleic acid, NaCl: Sodium chloride, NaVO4: Sodium orthovanadate, NEMO: NF-Kappa-B essential modulator, NF-κB: Nuclear factor kappa-light chain-enhancer of activated B cells, NSCLC: Nonsmall cell lung carcinoma, PBS: Phosphate buffered saline, PGE2: Prostaglandin E2, PI: Propidium iodide, PMSF: Phenylmethylsulfonyl fluoride, pRB: Phosphorylated retinoblastoma, R. angustifolia: Ruta angustifolia L. Pers, Rb: Retinoblastoma, rpm: Rotation per minute, RPMI: Roswell Park Memorial Institute, S phase: Synthesis phase, SD: Standard deviation, SDS-PAGE: Sodium dodecyl sulfate-polyacrylamide gel electrophoresis, Smac: Second mitochondria-derived activator of caspase, SPSS: Statistical Package for the Social Sciences, STAT3: Signal transducer and activation of transcription 3, tBID: Truncated BID, TNF: Tumor necrosis factor, TRADD: Tumor necrosis factor receptor type-1 associated death domain, TRAIL: TNF-related apoptosis- inducing ligand, USA: United States of America, v/v: Volume over volume.

  10. Fong HY, Abd Malek SN, Yee HS, Karsani SA
    Pharmacogn Mag, 2017 Oct-Dec;13(52):607-612.
    PMID: 29200721 DOI: 10.4103/pm.pm_53_17
    Background: Cervical cancer has become one of the most common cancers in women and currently available treatment options for cervical cancer are very limited. Naturally occurring chalcones and its derivatives have been studied extensively as a potential anticancer agent in different types of cancer and helichrysetin is naturally occurring chalcone that possess potent antiproliferative activity toward human cancer cells.

    Materials and Methods: Inhibitory activity of helichrysetin was evaluated at different concentrations. Ability of helichrysetin to induce apoptosis and its relation with c-Jun N-terminal kinase (JNK)-mediated mechanism of apoptosis was assessed using flow cytometry and Western blotting.

    Results: Helichrysetin inhibited Ca Ski cells at half maximal inhibitory concentration 30.62 ± 0.38 μM. This compound has the ability to induce DNA damage, mitochondrial membrane disruption, and loss of cell membrane integrity. We have shown that apoptosis was induced through the activation of JNK-mediated apoptosis by DNA damage in the cells then triggering p53-downstream apoptotic pathway with increased expression of pro-apoptotic proteins, Bax and caspase 3, and suppression of Bcl-2 anti-apoptotic protein. DNA damage in the cells also caused phosphorylation of protein ataxia-telangiectasia mutated, an activator of DNA damage response.

    Conclusion: We conclude that helichrysetin can inhibit Ca Ski cells through DNA damage-induced JNK-mediated apoptotic pathway highlighting the potential of this compound as anticancer agent for cervical cancer.

    SUMMARY: Helichrysetin induced DNA damage in Ca Ski cellsDNA damage caused JNK-mediated phosphorylation of p53 resulting in p53-mediated apoptosisHelichrysetin is a potential DNA damage inducing agent through JNK activation to kill human cervical carcinoma cells. Abbreviations used: ATM: Ataxia-telangiectasia mutated, DAPI: 4',6-diamidino-2-phenylindole, DMSO: Dimethyl sulfoxide, FITC: Fluorescein isothiocyanate, IC50: Half maximal inhibitory concentration, JC1-5,5',6,6'-Tetrachloro: 1',3,3'-tetraethylbenzimidazolylcarbocyanine, iodide, JNK: c-Jun N-terminal kinase, MMP: Mitochondrial membrane potential, PBS: Phosphate-buffered saline, SRB: Sulforhodamine B, TUNEL: Terminal deoxynucleotidyl transferase dUTP nick labeling.
  11. Phan CW, Sabaratnam V, Yong WK, Abd Malek SN
    Nat Prod Res, 2018 May;32(10):1229-1233.
    PMID: 28539058 DOI: 10.1080/14786419.2017.1331226
    Chalcones are a group of compounds widely distributed in plant kingdom. The aim of this study was to assess the neurite outgrowth stimulatory activity of selected chalcones, namely helichrysetin, xanthohumol and flavokawin-C. Using adherent rat pheochromocytoma (PC12 Adh) cells, the chalcones were subjected to neurite outgrowth assay and the extracellular nerve growth factor (NGF) levels were determined. Xanthohumol (10 μg/mL) displayed the highest (p 
  12. Syed Abdul Rahman SN, Abdul Wahab N, Abd Malek SN
    PMID: 23762112 DOI: 10.1155/2013/257108
    Bioassay-guided isolation of the active hexane fractions of Curcuma zedoaria led to the identification of five pure compounds, namely, curzerenone (1), neocurdione (2), curdione (3), alismol (4), and zederone (5) and a mixture of sterols, namely, campesterol (6), stigmasterol (7), and β -sitosterol (8). Alismol has never been reported to be present in Curcuma zedoaria. All isolated compounds except (3) were evaluated for their cytotoxic activity against MCF-7, Ca Ski, and HCT-116 cancer cell lines and noncancer human fibroblast cell line (MRC-5) using neutral red cytotoxicity assay. Curzerenone and alismol significantly inhibited cell proliferation in human cancer cell lines MCF-7, Ca Ski, and HCT-116 in a dose-dependent manner. Cytological observations by an inverted phase contrast microscope and Hoechst 33342/PI dual-staining assay showed typical apoptotic morphology of cancer cells upon treatment with curzerenone and alismol. Both compounds induce apoptosis through the activation of caspase-3. It can thus be suggested that curzerenone and alismol are modulated by apoptosis via caspase-3 signalling pathway. The findings of the present study support the use of Curcuma zedoaria rhizomes in traditional medicine for the treatment of cancer-related diseases. Thus, two naturally occurring sesquiterpenoids, curzerenone and alismol, hold great promise for use in chemopreventive and chemotherapeutic strategies.
  13. Ho YF, Karsani SA, Yong WK, Abd Malek SN
    PMID: 23533528 DOI: 10.1155/2013/857257
    Researchers are looking into the potential development of natural compounds for anticancer therapy. Previous studies have postulated the cytotoxic effect of helichrysetin towards different cancer cell lines. In this study, we investigated the cytotoxic effect of helichrysetin, a naturally occurring chalcone on four selected cancer cell lines, A549, MCF-7, Ca Ski, and HT-29, and further elucidated its biochemical and molecular mechanisms in human lung adenocarcinoma, A549. Helichrysetin showed the highest cytotoxic activity against Ca Ski followed by A549. Changes in the nuclear morphology of A549 cells such as chromatin condensation and nuclear fragmentation were observed in cells treated with helichrysetin. Further evidence of apoptosis includes the externalization of phosphatidylserine and the collapse of mitochondrial membrane potential which are both early signs of apoptosis. These signs of apoptosis are related to cell cycle blockade at the S checkpoint which suggests that the alteration of the cell cycle contributes to the induction of apoptosis in A549. These results suggest that helichrysetin has great potentials for development as an anticancer agent.
  14. Rad SK, Kanthimathi MS, Abd Malek SN, Lee GS, Looi CY, Wong WF
    PLoS One, 2015;10(12):e0145216.
    PMID: 26700476 DOI: 10.1371/journal.pone.0145216
    BACKGROUND: Cinnamomum cassia bark is a popular culinary spice used for flavoring and in traditional medicine. C. cassia extract (CE) induces apoptosis in many cell lines. In the present study, particular differences in the mechanism of the anti-proliferative property of C. cassia on two breast cancer cell lines, MCF-7 and MDA-MB-231, were elucidated.

    METHODOLOGY/PRINCIPAL FINDINGS: The hexane extract of C. cassia demonstrated high anti-proliferative activity against MCF-7 and MDA-MB-231 cells (IC50, 34 ± 3.52 and 32.42 ± 0.37 μg/ml, respectively). Oxidative stress due to disruption of antioxidant enzyme (SOD, GPx and CAT) activity is suggested as the probable cause for apoptosis initiation. Though the main apoptosis pathway in both cell lines was found to be through caspase-8 activation, caspase-9 was also activated in MDA-MB-231 cells but suppressed in MCF-7 cells. Gene expression studies revealed that AKT1, the caspase-9 suppressor, was up-regulated in MCF-7 cells while down-regulated in MDA-MB-231 cells. Although, AKT1 protein expression in both cell lines was down-regulated, a steady increase in MCF-7 cells was observed after a sharp decrease of suppression of AKT1. Trans-cinnamaldehyde and coumarin were isolated and identified and found to be mainly responsible for the observed anti-proliferative activity of CE (Cinnamomum cassia).

    CONCLUSION: Activation of caspase-8 is reported for the first time to be involved as the main apoptosis pathway in breast cancer cell lines upon treatment with C. cassia. The double effects of C. cassia on AKT1 gene expression in MCF-7 cells is reported for the first time in this study.

  15. Lay MM, Karsani SA, Banisalam B, Mohajer S, Abd Malek SN
    Biomed Res Int, 2014;2014:410184.
    PMID: 24818141 DOI: 10.1155/2014/410184
    In recent years, the utilization of certain medicinal plants as therapeutic agents has drastically increased. Phaleria macrocarpa (Scheff.) Boerl is frequently used in traditional medicine. The present investigation was undertaken with the purpose of developing pharmacopoeial standards for this species. Nutritional values such as ash, fiber, protein, fat, and carbohydrate contents were investigated, and phytochemical screenings with different reagents showed the presence of flavonoids, glycosides, saponin glycosides, phenolic compounds, steroids, tannins, and terpenoids. Our results also revealed that the water fraction had the highest antioxidant activity compared to the methanol extract and other fractions. The methanol and the fractionated extracts (hexane, chloroform, ethyl acetate, and water) of P. macrocarpa seeds were also investigated for their cytotoxic effects on selected human cancer cells lines (MCF-7, HT-29, MDA-MB231, Ca Ski, and SKOV-3) and a normal human fibroblast lung cell line (MRC-5). Information from this study can be applied for future pharmacological and therapeutic evaluations of the species, and may assist in the standardization for quality, purity, and sample identification. To the best of our knowledge, this is the first report on the phytochemical screening and cytotoxic effect of the crude and fractionated extracts of P. macrocarpa seeds on selected cells lines.
  16. Kanagasabapathy G, Kuppusamy UR, Abd Malek SN, Abdulla MA, Chua KH, Sabaratnam V
    PMID: 23259700 DOI: 10.1186/1472-6882-12-261
    BACKGROUND: Pleurotus sajor-caju (P. sajor-caju) has been extremely useful in the prevention of diabetes mellitus due to its low fat and high soluble fiber content for thousands of years. Insulin resistance is a key component in the development of diabetes mellitus which is caused by inflammation. In this study, we aimed to investigate the in vivo efficacy of glucan-rich polysaccharide of P. sajor-caju (GE) against diabetes mellitus and inflammation in C57BL/6J mice fed a high-fat diet.
    METHODS: Diabetes was induced in C57BL/6J mice by feeding a high-fat diet. The mice were randomly assigned to 7 groups (n=6 per group). The control groups in this study were ND (for normal diet) and HFD (for high-fat diet). The treated groups were ND240 (for normal diet) (240 mg/kg b.w) and HFD60, HFD120 and HFD240 (for high-fat), where the mice were administrated with three dosages of GE (60, 120, 240 mg GE/kg b.w respectively). Metformin (2 mg/kg b.w) served as positive control. The glucose tolerance test, glucose and insulin levels were measured at the end of 16 weeks. Expressions of genes for inflammatory markers, GLUT-4 and adiponectin in the adipose tissue of the mice were assessed. One-way ANOVA and Duncan's multiple range tests (DMRT) were used to determine the significant differences between groups.
    RESULTS: GE treated groups improved the glucose tolerance, attenuated hyperglycemia and hyperinsulinemia in the mice by up-regulating the adiponectin and GLUT-4 gene expressions. The mice in GE treated groups did not develop insulin resistance. GE also down-regulated the expression of inflammatory markers (IL-6, TNF-α, SAA2, CRP and MCP-1) via attenuation of nuclear transcription factors (NF-κB).
    CONCLUSION: Glucan-rich polysaccharide of P. sajor-caju can serve as a potential agent for prevention of glucose intolerance, insulin resistance and inflammation.
  17. Nallathamby N, Phan CW, Seow SL, Baskaran A, Lakshmanan H, Abd Malek SN, et al.
    Front Pharmacol, 2017;8:998.
    PMID: 29379443 DOI: 10.3389/fphar.2017.00998
    Edible and medicinal mushrooms are regularly used in natural medicines and home remedies since antiquity for ailments like fever, inflammation, and respiratory disorders. Lignosus rhinocerotis (Cooke) Ryvarden is a polypore found in Malaysia and other regions in South East Asia. It can be located on a spot where a tigress drips milk while feeding, hence the name "tiger's milk mushroom." The sclerotium of L. rhinocerotis is highly sought after by the native communities in Malaysia to stave off hunger, relieve cough and asthma, and provide stamina. The genomic features of L. rhinocerotis have been described. The pharmacological and toxicity effects, if any, of L. rhinocerotis sclerotium have been scientifically verified in recent years. In this review, the validated investigations including the cognitive function, neuroprotection, immune modulation, anti-asthmatic, anti-coagulation, anti-inflammatory, anti-microbial/ anti-viral, anti-obesity, anti-cancer/ anti-tumor, and antioxidant properties are highlighted. These findings suggest that L. rhinocerotis can be considered as an alternative and natural medicine in the management of non-communicable diseases. However, there is a paucity of validation studies including human clinical trials of the mycochemicals of L. rhinocerotis.
  18. Phan CW, Lee GS, Hong SL, Wong YT, Brkljača R, Urban S, et al.
    Food Funct, 2014 Dec;5(12):3160-9.
    PMID: 25288148 DOI: 10.1039/c4fo00452c
    Hericium erinaceus (Bull.: Fr.) Pers. is an edible and medicinal mushroom used traditionally to improve memory. In this study, we investigated the neuritogenic effects of hericenones isolated from H. erinaceus and the mechanisms of action involved. H. erinaceus was cultivated and the secondary metabolites were elucidated by high performance liquid chromatography (HPLC), liquid chromatography-mass spectrometry (LC-MS), and nuclear magnetic resonance (NMR). The secondary metabolites were tested for neurite outgrowth activity (if any). Rat pheochromocytoma (PC12) cells were employed and the nerve growth factor (NGF) level was also determined. The signaling pathways involved in the mushroom-induced neuritogenesis were investigated using several pharmacological inhibitors. Hericenones B-E (1-4), erinacerin A (5) and isohericerin (6) were isolated from the basidiocarps of H. erinaceus. The hericenones did not promote neurite outgrowth but when induced with a low concentration of NGF (5 ng mL(-1)), the neuritogenic activity was comparable to that of the positive control (50 ng mL(-1) of NGF). Hericenone E was able to stimulate NGF secretion which was two-fold higher than that of the positive control. The neuritogenesis process was partially blocked by the tyrosine kinase receptor (Trk) inhibitor, K252a, suggesting that the neuritogenic effect was not solely due to NGF. Hericenone E also increased the phosphorylation of extracellular-signal regulated kinases (ERKs) and protein kinase B (Akt). Taken together, this study suggests that hericenone E potentiated NGF-induced neuritogenesis in PC12 cells via the MEK/ERK and PI3K/Akt pathways.
  19. Hong SL, Lee GS, Syed Abdul Rahman SN, Ahmed Hamdi OA, Awang K, Aznam Nugroho N, et al.
    ScientificWorldJournal, 2014;2014:397430.
    PMID: 25177723 DOI: 10.1155/2014/397430
    Curcuma purpurascens Bl., belonging to the Zingiberaceae family, is known as temu tis in Yogyakarta, Indonesia. In this study, the hydrodistilled dried ground rhizome oil was investigated for its chemical content and antiproliferative activity against selected human carcinoma cell lines (MCF7, Ca Ski, A549, HT29, and HCT116) and a normal human lung fibroblast cell line (MRC5). Results from GC-MS and GC-FID analysis of the rhizome oil of temu tis showed turmerone as the major component, followed by germacrone, ar-turmerone, germacrene-B, and curlone. The rhizome oil of temu tis exhibited strong cytotoxicity against HT29 cells (IC50 value of 4.9 ± 0.4 μg/mL), weak cytotoxicity against A549, Ca Ski, and HCT116 cells (with IC50 values of 46.3 ± 0.7, 32.5 ± 1.1, and 35.0 ± 0.3 μg/mL, resp.), and no inhibitory effect against MCF7 cells. It exhibited mild cytotoxicity against a noncancerous human lung fibroblast cell line (MRC5), with an IC50 value of 25.2 ± 2.7 μg/mL. This is the first report on the chemical composition of this rhizome's oil and its selective antiproliferative effect on HT29. The obtained data provided a basis for further investigation of the mode of cell death.
  20. Ahmed Hamdi OA, Syed Abdul Rahman SN, Awang K, Abdul Wahab N, Looi CY, Thomas NF, et al.
    ScientificWorldJournal, 2014;2014:321943.
    PMID: 25126594 DOI: 10.1155/2014/321943
    Curcuma zedoaria also known as Temu putih is traditionally used in food preparations and treatment of various ailments including cancer. The cytotoxic activity of hexane, dichloromethane, ethyl acetate, methanol, and the methanol-soxhlet extracts of Curcuma zedoaria rhizomes was tested on two human cancer cell lines (Ca Ski and MCF-7) and a noncancer cell line (HUVEC) using MTT assay. Investigation on the chemical components in the hexane and dichloromethane fractions gave 19 compounds, namely, labda-8(17),12 diene-15,16 dial (1), dehydrocurdione (2), curcumenone (3), comosone II (4), curcumenol (5), procurcumenol (6), germacrone (7), zerumbone epoxide (8), zederone (9), 9-isopropylidene-2,6-dimethyl-11-oxatricyclo[6.2.1.0(1,5)]undec-6-en-8-ol (10), furanodiene (11), germacrone-4,5-epoxide (12), calcaratarin A (13), isoprocurcumenol (14), germacrone-1,10-epoxide (15), zerumin A (16), curcumanolide A (17), curcuzedoalide (18), and gweicurculactone (19). Compounds (1-19) were evaluated for their antiproliferative effect using MTT assay against four cancer cell lines (Ca Ski, MCF-7, PC-3, and HT-29). Curcumenone (3) and curcumenol (5) displayed strong antiproliferative activity (IC50 = 8.3 ± 1.0 and 9.3 ± 0.3 μg/mL, resp.) and were found to induce apoptotic cell death on MCF-7 cells using phase contrast and Hoechst 33342/PI double-staining assay. Thus, the present study provides basis for the ethnomedical application of Curcuma zedoaria in the treatment of breast cancer.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links