Displaying publications 161 - 180 of 259 in total

Abstract:
Sort:
  1. Byrne I, Aure W, Manin BO, Vythilingam I, Ferguson HM, Drakeley CJ, et al.
    Sci Rep, 2021 Jun 03;11(1):11810.
    PMID: 34083582 DOI: 10.1038/s41598-021-90893-1
    Land-use changes, such as deforestation and agriculture, can influence mosquito vector populations and malaria transmission. These land-use changes have been linked to increased incidence in human cases of the zoonotic malaria Plasmodium knowlesi in Sabah, Malaysian Borneo. This study investigates whether these associations are partially driven by fine-scale land-use changes creating more favourable aquatic breeding habitats for P. knowlesi anopheline vectors. Using aerial remote sensing data, we developed a sampling frame representative of all land use types within a major focus of P. knowlesi transmission. From 2015 to 2016 monthly longitudinal surveys of larval habitats were collected in randomly selected areas stratified by land use type. Additional remote sensing data on environmental variables, land cover and landscape configuration were assembled for the study site. Risk factor analyses were performed over multiple spatial scales to determine associations between environmental and spatial variables and anopheline larval presence. Habitat fragmentation (300 m), aspect (350 m), distance to rubber plantations (100 m) and Culex larval presence were identified as risk factors for Anopheles breeding. Additionally, models were fit to determine the presence of potential larval habitats within the areas surveyed and used to generate a time-series of monthly predictive maps. These results indicate that land-use change and topography influence the suitability of larval habitats, and may partially explain the link between P. knowlesi incidence and deforestation. The predictive maps, and identification of the spatial scales at which risk factors are most influential may aid spatio-temporally targeted vector control interventions.
    Matched MeSH terms: Plasmodium knowlesi*
  2. Chin AZ, Avoi R, Atil A, Awang Lukman K, Syed Abdul Rahim SS, Ibrahim MY, et al.
    PLoS One, 2021;16(9):e0257104.
    PMID: 34506556 DOI: 10.1371/journal.pone.0257104
    BACKGROUND: In the Malaysian state of Sabah, P. knowlesi notifications increased from 2% (59/2,741) of total malaria notifications in 2004 to 98% (2030/2,078) in 2017. There was a gap regarding P. knowlesi acquisition risk factors related to practice specifically in working age group. The main objective of this study was to identify the risk factors for acquiring P. knowlesi infection in Sabah among the working age group.

    METHODS AND METHODS: This retrospective population-based case-control study was conducted in Ranau district to assess sociodemographic, behavioural and medical history risk factors using a pretested questionnaire. The data were entered and analyzed using IBM SPSS version 23. Bivariate analysis was conducted using binary logistic regression whereas multivariate analysis was conducted using multivariable logistic regression. We set a statistical significance at p-value less than or equal to 0.05.

    RESULTS: A total of 266 cases and 532 controls were included in the study. Male gender (AOR = 2.71; 95% CI: 1.63-4.50), spending overnight in forest (AOR = 1.92; 95% CI: 1.20-3.06), not using mosquito repellent (AOR = 2.49; 95% CI: 1.36-4.56) and history of previous malaria infection (AOR = 49.34; 95% CI: 39.09-78.32) were found to be independent predictors of P. knowlesi infection.

    CONCLUSIONS: This study showed the need to strengthen the strategies in preventing and controlling P. knowlesi infection specifically in changing the practice of spending overnight in forest and increasing the usage of personal mosquito repellent.

    Matched MeSH terms: Plasmodium knowlesi/physiology*
  3. Tan AF, Sakam SSB, Piera K, Rajahram GS, William T, Barber BE, et al.
    PLoS Negl Trop Dis, 2024 Aug;18(8):e0012424.
    PMID: 39150978 DOI: 10.1371/journal.pntd.0012424
    The risk of severe malaria from the zoonotic parasite Plasmodium knowlesi approximates that from P. falciparum. In severe falciparum malaria, neutrophil activation contributes to inflammatory pathogenesis, including acute lung injury (ALI). The role of neutrophil activation in the pathogenesis of severe knowlesi malaria has not been examined. We evaluated 213 patients with P. knowlesi mono-infection (138 non-severe, 75 severe) and 49 Plasmodium-negative controls from Malaysia. Markers of neutrophil activation (soluble neutrophil elastase [NE], citrullinated histone [CitH3] and circulating neutrophil extracellular traps [NETs]) were quantified in peripheral blood by microscopy and immunoassays. Findings were correlated with malaria severity, ALI clinical criteria, biomarkers of parasite biomass, haemolysis, and endothelial activation. Neutrophil activation increased with disease severity, with median levels higher in severe than non-severe malaria and controls for NE (380[IQR:210-930]ng/mL, 236[139-448]ng/mL, 218[134-307]ng/mL, respectively) and CitH3 (8.72[IQR:3.0-23.1]ng/mL, 4.29[1.46-9.49]ng/mL, 1.53[0.6-2.59]ng/mL, respectively)[all p<0.01]. NETs were higher in severe malaria compared to controls (126/μL[IQR:49-323] vs 51[20-75]/μL, p<0.001). In non-severe malaria, neutrophil activation fell significantly upon discharge from hospital (p<0.03). In severe disease, NETs, NE, and CitH3 were correlated with parasitaemia, cell-free haemoglobin and angiopoietin-2 (all Pearson's r>0.24, p<0.05). Plasma NE and angiopoietin-2 were higher in knowlesi patients with ALI than those without (p<0.008); neutrophilia was associated with an increased risk of ALI (aOR 3.27, p<0.01). In conclusion, neutrophil activation is increased in ALI and in proportion to disease severity in knowlesi malaria, is associated with endothelial activation, and may contribute to disease pathogenesis. Trials of adjunctive therapies to regulate neutrophil activation are warranted in severe knowlesi malaria.
    Matched MeSH terms: Plasmodium knowlesi*
  4. Lai MY, Ooi CH, Jaimin JJ, Lau YL
    Am J Trop Med Hyg, 2020 06;102(6):1370-1372.
    PMID: 32228783 DOI: 10.4269/ajtmh.20-0001
    The incidence of zoonotic malaria, Plasmodium knowlesi, infection is increasing and now is the major cause of malaria in Malaysia. Here, we describe a WarmStart colorimetric loop-mediated isothermal amplification (LAMP) assay for the detection of Plasmodium spp. The detection limit for this assay was 10 copies/µL for P knowlesi and Plasmodium ovale and 1 copy/µL for Plasmodium falciparum, Plasmodium vivax, and Plasmodium malariae. To test clinical sensitivity and specificity, 100 microscopy-positive and 20 malaria-negative samples were used. The WarmStart colorimetric LAMP was 98% sensitive and 100% specific. Amplification products were visible for direct observation, thereby eliminating the need for post-amplification processing steps. Therefore, WarmStart colorimetric LAMP is suitable for use in resource-limited settings.
    Matched MeSH terms: Plasmodium knowlesi/isolation & purification*
  5. Lai MY, Ooi CH, Lau YL
    Am J Trop Med Hyg, 2017 Nov;97(5):1597-1599.
    PMID: 28820700 DOI: 10.4269/ajtmh.17-0427
    In this study, we developed a recombinase polymerase amplification (RPA) assay for specific diagnosis of Plasmodium knowlesi. Genomic DNA was extracted from whole blood samples using a commercial kit. With incubation at 37°C, the samples were successfully amplified within 20 minutes. The end product of RPA was further examined by loading onto agarose gel and a specific band was observed with a size of 128 bp. The RPA assay exhibited high sensitivity with limits of detection down to one copy of the plasmid. From the specificity experiments, it was demonstrated that all P. knowlesi samples (N = 45) were positive while other Plasmodium spp. (N = 42) and negative samples (N = 6) were negative. Therefore, the RPA assay is a highly promising approach with the potential to be used in resource-limited settings. This assay can be further optimized for bedside and on field application.
    Matched MeSH terms: Plasmodium knowlesi/isolation & purification*
  6. Vythilingam I, Lim YA, Venugopalan B, Ngui R, Leong CS, Wong ML, et al.
    Parasit Vectors, 2014;7:436.
    PMID: 25223878 DOI: 10.1186/1756-3305-7-436
    While transmission of the human Plasmodium species has declined, a significant increase in Plasmodium knowlesi/Plasmodium malariae cases was reported in Hulu Selangor, Selangor, Malaysia. Thus, a study was undertaken to determine the epidemiology and the vectors involved in the transmission of knowlesi malaria.
    Matched MeSH terms: Plasmodium knowlesi/genetics; Plasmodium knowlesi/isolation & purification*
  7. Cheong FW, Fong MY, Lau YL, Mahmud R
    Malar J, 2013;12:454.
    PMID: 24354660 DOI: 10.1186/1475-2875-12-454
    Plasmodium knowlesi is the fifth Plasmodium species that can infect humans. The Plasmodium merozoite surface protein-1(42) (MSP-1(42)) is a potential candidate for malaria vaccine. However, limited studies have focused on P. knowlesi MSP-1(42).
    Matched MeSH terms: Plasmodium knowlesi/genetics; Plasmodium knowlesi/immunology*
  8. Palaeya V, Lau YL, Mahmud R, Chen Y, Fong MY
    Malar J, 2013;12:182.
    PMID: 23734702 DOI: 10.1186/1475-2875-12-182
    Plasmodium knowlesi is the fifth species identified to cause malaria in humans and is often misdiagnosed as Plasmodium malariae due to morphological similarities. The development of an inexpensive, serological detection method utilizing antibodies specific to P. knowlesi would be a valuable tool for diagnosis. However, the identification of specific antigens for these parasites remains a major challenge for generating such assays. In this study, surface protein containing an altered thrombospondin repeat domain (SPATR) was selected as a potentially specific antigen from P. knowlesi. Its multistage expression by sporozoites, asexual erythrocytic forms and gametocytes, along with its possible role in liver cell invasion, suggests that SPATR could be used as a biomarker for diagnosis of P. knowlesi.
    Matched MeSH terms: Plasmodium knowlesi/genetics; Plasmodium knowlesi/immunology*
  9. Srinivasan V, Mohamed M, Zakaria R, Ahmad AH
    Infect Disord Drug Targets, 2012 Oct;12(5):371-9.
    PMID: 23082960
    Malaria, one of the most deadly diseases of our time affects more than 200 million people across the globe and is responsible for about one million deaths annually. Until recently Plasmodium falciparum has been the main cause for malarial infection in human beings but now Plasmodium knowlesi from Malaysia remains as one of the most virulent parasite spreading fast not only in Malaysia but in different parts of the world. Hence there is urgent need for the global fight to control malaria. Global malaria eradication program by use of insecticide spraying has resulted in good response in the past. Treatment of malaria infected patients with anti-malarial drugs has helped to eliminate malarial infections successfully but with increased resistance displayed by malarial parasites to these drugs there is resurgence of malaria caused both by drug resistance as well as by infection caused by new malarial species like Plasmodium knowlesi. With recent advances on molecular studies on malarial parasites it is now clear that the pineal hormone melatonin acts as a cue for growth and development of Plasmodium falciparum. Same may be true for Plasmodium knowlesi also. Hence treatment modalities that can effectively block the action of melatonin on Plasmodium species during night time by way of using either bright light therapy or use of melatonin receptor blocking can be considered as useful approaches for eliminating malarial infection in man.
    Matched MeSH terms: Plasmodium knowlesi/drug effects; Plasmodium knowlesi/isolation & purification
  10. Sabbatani S, Fiorino S, Manfredi R
    Infez Med, 2012 Mar;20(1):5-11.
    PMID: 22475654
    Epidemic foci of Plasmodium knowlesi malaria have been identified during the past ten years in Malaysia, in particular in the States of Sarawak and Sabah (Malaysia Borneo), and in the Pahang region (peninsular Malaysia). Based on a review of the available recent international literature, the authors underline the importance of molecular biology examinations, polymerase chain reactions (PCR), performed with primers specific for P. knowlesi, since the current microscopic examination (haemoscope) may fail to distinguish P. knowlesi from Plasmodium malariae, due to the very similar appearance of the two parasites. P. knowlesi has been described as the causal agent of life-threatening and lethal forms of malaria: its clinical picture is more severe when compared with that of P. malariae, since the disease is characterized by greater parasitaemia, as opposed to that documented in the course of P. malariae disease. The most effective carrier is Anopheles leucosphyrus: this mosquito is attracted by both humans and monkeys. Among primates, the natural hosts of P. knowlesi are Macaca fascicularis and Macaca nemestina, while Saimiri scirea and Macaca mulatta, which cannot become infected in nature, may be useful in experimental models. When underlining the potentially severe evolution, we note the key role played by prompt disease recognition, which is expected to be more straightforward in patients monitored in endemic countries at high risk, but should be carefully implemented for subjects being admitted to hospital in Western countries suffering from the typical signs and symptoms of malaria, after travelling in South-East Asia where they were engaged in excursions in the tropical forest (trekking, and similar outdoor activities). In these cases, the diagnosis should be prompt, and suitable treatment should follow. According to data in the literature, in non-severe cases chloroquine proves very effective against P. knowlesi, achieving the disappearance of signs and symptoms in 96% of cases after only 24 hours after treatment start. In the light of the emerging epidemiological data, P. knowlesi should be added to Plasmodium vivax, Plasmodium ovale, P. malariae, and Plasmodium falciparum, as the fifth aetiological agent of malaria. During the next few years, it will become mandatory to plan an appropriate surveillance program of the epidemiological evolution, paying also great attention to the clinical features of patients affected by P. knowlesi malaria, which are expected to worsen according to the time elapsed; some studies seem to point out greater severity according to increased parasitaemia, paralleling the increased interhuman infectious passages of the plasmodium.
    Matched MeSH terms: Plasmodium knowlesi/genetics; Plasmodium knowlesi/isolation & purification*
  11. Daneshvar C, Davis TM, Cox-Singh J, Rafa'ee MZ, Zakaria SK, Divis PC, et al.
    Malar J, 2010;9:238.
    PMID: 20723228 DOI: 10.1186/1475-2875-9-238
    Plasmodium knowlesi is a cause of symptomatic and potentially fatal infections in humans. There are no studies assessing the detailed parasitological response to treatment of knowlesi malaria infections in man and whether antimalarial resistance occurs.
    Matched MeSH terms: Plasmodium knowlesi/drug effects*; Plasmodium knowlesi/isolation & purification
  12. Tan CH, Vythilingam I, Matusop A, Chan ST, Singh B
    Malar J, 2008;7:52.
    PMID: 18377652 DOI: 10.1186/1475-2875-7-52
    A large focus of human infections with Plasmodium knowlesi, a simian parasite naturally found in long-tailed and pig-tailed macaques was discovered in the Kapit Division of Sarawak, Malaysian Borneo. A study was initiated to identify the vectors of malaria, to elucidate where transmission is taking place and to understand the bionomics of the vectors in Kapit.
    Matched MeSH terms: Plasmodium knowlesi/genetics; Plasmodium knowlesi/isolation & purification*
  13. Barber BE, William T, Grigg MJ, Yeo TW, Anstey NM
    Malar J, 2013;12:8.
    PMID: 23294844 DOI: 10.1186/1475-2875-12-8
    In areas co-endemic for multiple Plasmodium species, correct diagnosis is crucial for appropriate treatment and surveillance. Species misidentification by microscopy has been reported in areas co-endemic for vivax and falciparum malaria, and may be more frequent in regions where Plasmodium knowlesi also commonly occurs.
    Matched MeSH terms: Plasmodium knowlesi/cytology*; Plasmodium knowlesi/genetics
  14. Singh B, Kim Sung L, Matusop A, Radhakrishnan A, Shamsul SS, Cox-Singh J, et al.
    Lancet, 2004 Mar 27;363(9414):1017-24.
    PMID: 15051281
    About a fifth of malaria cases in 1999 for the Kapit division of Malaysian Borneo had routinely been identified by microscopy as Plasmodium malariae, although these infections appeared atypical and a nested PCR assay failed to identify P malariae DNA. We aimed to investigate whether such infections could be attributable to a variant form of P malariae or a newly emergent Plasmodium species.
    Matched MeSH terms: Plasmodium knowlesi/genetics; Plasmodium knowlesi/isolation & purification*
  15. Piera KA, Aziz A, William T, Bell D, González IJ, Barber BE, et al.
    Malar J, 2017 01 13;16(1):29.
    PMID: 28086789 DOI: 10.1186/s12936-016-1676-9
    BACKGROUND: Plasmodium knowlesi is the most common cause of malaria in Malaysia. However, microscopic diagnosis is inaccurate and rapid diagnostic tests (RDTs) are insufficiently sensitive. PCR is sensitive and specific but not feasible at a district level. Loop-mediated isothermal amplification (LAMP) shows potential with only basic requirements. A commercially available LAMP assay, the Eiken Loopamp™ MALARIA Pan Detection kit, is sensitive for Plasmodium falciparum and Plasmodium vivax, but has not previously been evaluated for P. knowlesi. This study aims to determine the sensitivity of this LAMP assay for detecting P. knowlesi infection.

    METHODS: Study participants included 73 uncomplicated malaria patients with PCR species confirmation: 50 P. knowlesi, 20 P. falciparum and 3 P. vivax. Nineteen malaria-negative, non-endemic area controls were also included. The sensitivity of the Eiken Loopamp™ MALARIA Pan Detection kit (Pan LAMP) for detecting each Plasmodium species was evaluated. Sensitivity and specificity of the Eiken Loopamp™ MALARIA Pf Detection kit (Pf LAMP) for P. falciparum were also determined. The limit of detection for each LAMP assay was evaluated, with results compared to PCR. All P. knowlesi patients were also tested by CareStart™ (Pf/VOM) and OptiMAL-IT™ (Pan/Pf) RDTs.

    RESULTS: The sensitivity of the Pan LAMP assay was 100% for P. knowlesi (95% CI 92.9-100), P. falciparum (95% CI 83.2-100), and P. vivax (95% CI 29.2-100). The Pf LAMP was 100% sensitive and specific for P. falciparum detection, with all P. knowlesi samples having a negative reaction. LAMP sensitivity was superior to both RDTs, with only 10 and 28% of P. knowlesi samples testing positive to CareStart™ and OptiMAL-IT™, respectively. Limit of detection using the Pan LAMP for both P. knowlesi and P. vivax was 2 parasites/μL, comparable to PCR. For P. falciparum both the Pan LAMP and Pf LAMP demonstrated a limit of detection of 20 parasites/μL.

    CONCLUSIONS: The Eiken Loopamp™ MALARIA Pan Detection kit is sensitive for detection of P. knowlesi in low parasitaemia clinical infections, as well as P. falciparum and P. vivax. However, a P. knowlesi-specific field assay in a simpler format would assist correct species identification and initiation of optimal treatment for all malaria patients.

    Matched MeSH terms: Plasmodium knowlesi/genetics; Plasmodium knowlesi/isolation & purification*
  16. Chua TH, Manin BO, Daim S, Vythilingam I, Drakeley C
    PLoS Negl Trop Dis, 2017 Oct;11(10):e0005991.
    PMID: 28968395 DOI: 10.1371/journal.pntd.0005991
    BACKGROUND: Anopheles balabacensis of the Leucospyrus group has been confirmed as the primary knowlesi malaria vector in Sabah, Malaysian Borneo for some time now. Presently, knowlesi malaria is the only zoonotic simian malaria in Malaysia with a high prevalence recorded in the states of Sabah and Sarawak.

    METHODOLOGY/PRINCIPAL FINDINGS: Anopheles spp. were sampled using human landing catch (HLC) method at Paradason village in Kudat district of Sabah. The collected Anopheles were identified morphologically and then subjected to total DNA extraction and polymerase chain reaction (PCR) to detect Plasmodium parasites in the mosquitoes. Identification of Plasmodium spp. was confirmed by sequencing the SSU rRNA gene with species specific primers. MEGA4 software was then used to analyse the SSU rRNA sequences and bulid the phylogenetic tree for inferring the relationship between simian malaria parasites in Sabah. PCR results showed that only 1.61% (23/1,425) of the screened An. balabacensis were infected with one or two of the five simian Plasmodium spp. found in Sabah, viz. Plasmodium coatneyi, P. inui, P. fieldi, P. cynomolgi and P. knowlesi. Sequence analysis of SSU rRNA of Plasmodium isolates showed high percentage of identity within the same Plasmodium sp. group. The phylogenetic tree based on the consensus sequences of P. knowlesi showed 99.7%-100.0% nucleotide identity among the isolates from An. balabacensis, human patients and a long-tailed macaque from the same locality.

    CONCLUSIONS/SIGNIFICANCE: This is the first study showing high molecular identity between the P. knowlesi isolates from An. balabacensis, human patients and a long-tailed macaque in Sabah. The other common simian Plasmodium spp. found in long-tailed macaques and also detected in An. balabacensis were P. coatneyi, P. inui, P. fieldi and P. cynomolgi. The high percentage identity of nucleotide sequences between the P. knowlesi isolates from the long-tailed macaque, An. balabacensis and human patients suggests a close genetic relationship between the parasites from these hosts.

    Matched MeSH terms: Plasmodium knowlesi/classification*; Plasmodium knowlesi/genetics*
  17. Grigg MJ, William T, Barber BE, Rajahram GS, Menon J, Schimann E, et al.
    Clin Infect Dis, 2018 Jul 18;67(3):350-359.
    PMID: 29873683 DOI: 10.1093/cid/ciy065
    BACKGROUND: Plasmodium knowlesi is increasingly reported in Southeast Asia, but prospective studies of its clinical spectrum in children and comparison with autochthonous human-only Plasmodium species are lacking.

    METHODS: Over 3.5 years, we prospectively assessed patients of any age with molecularly-confirmed Plasmodium monoinfection presenting to 3 district hospitals in Sabah, Malaysia.

    RESULTS: Of 481 knowlesi, 172 vivax, and 96 falciparum malaria cases enrolled, 44 (9%), 71 (41%), and 31 (32%) children aged ≤12 years. Median parasitemia was lower in knowlesi malaria (2480/μL [interquartile range, 538-8481/μL]) than in falciparum (9600/μL; P < .001) and vivax malaria. In P. knowlesi, World Health Organization-defined anemia was present in 82% (95% confidence interval [CI], 67%-92%) of children vs 36% (95% CI, 31%-41%) of adults. Severe knowlesi malaria occurred in 6.4% (95% CI, 3.9%-8.3%) of adults but not in children; the commenst severity criterion was acute kideny injury. No patient had coma. Age, parasitemia, schizont proportion, abdominal pain, and dyspnea were independently associated with severe knowlesi malaria, with parasitemia >15000/μL the best predictor (adjusted odds ratio, 16.1; negative predictive value, 98.5%; P < .001). Two knowlesi-related adult deaths occurred (fatality rate: 4.2/1000 adults).

    CONCLUSIONS: Age distribution and parasitemia differed markedly in knowlesi malaria compared to human-only species, with both uncomplicated and severe disease occurring at low parasitemia. Severe knowlesi malaria occurred only in adults; however, anemia was more common in children despite lower parasitemia. Parasitemia independently predicted knowlesi disease severity: Intravenous artesunate is warranted initially for those with parasitemia >15000/μL.

    Matched MeSH terms: Plasmodium knowlesi/genetics; Plasmodium knowlesi/isolation & purification*
  18. Herman LS, Fornace K, Phelan J, Grigg MJ, Anstey NM, William T, et al.
    PLoS Negl Trop Dis, 2018 Jun;12(6):e0006457.
    PMID: 29902183 DOI: 10.1371/journal.pntd.0006457
    BACKGROUND: Plasmodium knowlesi is the most common cause of malaria in Malaysian Borneo, with reporting limited to clinical cases presenting to health facilities and scarce data on the true extent of transmission. Serological estimations of transmission have been used with other malaria species to garner information about epidemiological patterns. However, there are a distinct lack of suitable serosurveillance tools for this neglected disease.

    METHODOLOGY/PRINCIPAL FINDINGS: Using in silico tools, we designed and expressed four novel P. knowlesi protein products to address the distinct lack of suitable serosurveillance tools: PkSERA3 antigens 1 and 2, PkSSP2/TRAP and PkTSERA2 antigen 1. Antibody prevalence to these antigens was determined by ELISA for three time-points post-treatment from a hospital-based clinical treatment trial in Sabah, East Malaysia (n = 97 individuals; 241 total samples for all time points). Higher responses were observed for the PkSERA3 antigen 2 (67%, 65/97) across all time-points (day 0: 36.9% 34/92; day 7: 63.8% 46/72; day 28: 58.4% 45/77) with significant differences between the clinical cases and controls (n = 55, mean plus 3 SD) (day 0 p<0.0001; day 7 p<0.0001; day 28 p<0.0001). Using boosted regression trees, we developed models to classify P. knowlesi exposure (cross-validated AUC 88.9%; IQR 86.1-91.3%) and identified the most predictive antibody responses.

    CONCLUSIONS/SIGNIFICANCE: The PkSERA3 antigen 2 had the highest relative variable importance in all models. Further validation of these antigens is underway to determine the specificity of these tools in the context of multi-species infections at the population level.

    Matched MeSH terms: Plasmodium knowlesi/immunology; Plasmodium knowlesi/isolation & purification*
  19. Noordin NR, Lee PY, Mohd Bukhari FD, Fong MY, Abdul Hamid MH, Jelip J, et al.
    Am J Trop Med Hyg, 2020 09;103(3):1107-1110.
    PMID: 32618263 DOI: 10.4269/ajtmh.20-0268
    Asymptomatic and/or low-density malaria infection has been acknowledged as an obstacle to achieving a malaria-free country. This study aimed to determine the prevalence of asymptomatic and/or low-density malaria infection in previously reported malarious localities using nested PCR in four states, namely, Johor, Pahang, Kelantan, and Selangor, between June 2019 and January 2020. Blood samples (n = 585) were collected and were extracted using a QIAamp blood kit. The DNA was concentrated and subjected to nested PCR. Thin and thick blood smears were examined as well. Of the 585 samples collected, 19 were positive: 10 for Plasmodium knowlesi, eight for Plasmodium vivax, and one for Plasmodium ovale. Asymptomatic and/or low-density malaria infection is a threat to malaria elimination initiatives. Eliminating countries should develop guidance policy on the importance of low-density malaria infection which includes detection and treatment policy.
    Matched MeSH terms: Plasmodium knowlesi/genetics; Plasmodium knowlesi/isolation & purification
  20. Grigg MJ, Barber BE, Marfurt J, Imwong M, William T, Bird E, et al.
    PLoS One, 2016;11(3):e0149519.
    PMID: 26930493 DOI: 10.1371/journal.pone.0149519
    BACKGROUND: Malaria caused by zoonotic Plasmodium knowlesi is an emerging threat in Eastern Malaysia. Despite demonstrated vector competency, it is unknown whether human-to-human (H-H) transmission is occurring naturally. We sought evidence of drug selection pressure from the antimalarial sulfadoxine-pyrimethamine (SP) as a potential marker of H-H transmission.

    METHODS: The P. knowlesi dihdyrofolate-reductase (pkdhfr) gene was sequenced from 449 P. knowlesi malaria cases from Sabah (Malaysian Borneo) and genotypes evaluated for association with clinical and epidemiological factors. Homology modelling using the pvdhfr template was used to assess the effect of pkdhfr mutations on the pyrimethamine binding pocket.

    RESULTS: Fourteen non-synonymous mutations were detected, with the most common being at codon T91P (10.2%) and R34L (10.0%), resulting in 21 different genotypes, including the wild-type, 14 single mutants, and six double mutants. One third of the P. knowlesi infections were with pkdhfr mutants; 145 (32%) patients had single mutants and 14 (3%) had double-mutants. In contrast, among the 47 P. falciparum isolates sequenced, three pfdhfr genotypes were found, with the double mutant 108N+59R being fixed and the triple mutants 108N+59R+51I and 108N+59R+164L occurring with frequencies of 4% and 8%, respectively. Two non-random spatio-temporal clusters were identified with pkdhfr genotypes. There was no association between pkdhfr mutations and hyperparasitaemia or malaria severity, both hypothesized to be indicators of H-H transmission. The orthologous loci associated with resistance in P. falciparum were not mutated in pkdhfr. Subsequent homology modelling of pkdhfr revealed gene loci 13, 53, 120, and 173 as being critical for pyrimethamine binding, however, there were no mutations at these sites among the 449 P. knowlesi isolates.

    CONCLUSION: Although moderate diversity was observed in pkdhfr in Sabah, there was no evidence this reflected selective antifolate drug pressure in humans.

    Matched MeSH terms: Plasmodium knowlesi/drug effects*; Plasmodium knowlesi/enzymology*; Plasmodium knowlesi/genetics
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links