Previously, direct-proportional length-based DNA computing (DPLB-DNAC) for solving weighted graph problems has been reported. The proposed DPLB-DNAC has been successfully applied to solve the shortest path problem, which is an instance of weighted graph problems. The design and development of DPLB-DNAC is important in order to extend the capability of DNA computing for solving numerical optimization problem. According to DPLB-DNAC, after the initial pool generation, the initial solution is subjected to amplification by polymerase chain reaction and, finally, the output of the computation is visualized by gel electrophoresis. In this paper, however, we give more attention to the initial pool generation of DPLB-DNAC. For this purpose, two kinds of initial pool generation methods, which are generally used for solving weighted graph problems, are evaluated. Those methods are hybridization-ligation and parallel overlap assembly (POA). It is found that for DPLB-DNAC, POA is better than that of the hybridization-ligation method, in terms of population size, generation time, material usage, and efficiency, as supported by the results of actual experiments.
The Nipah and Hendra viruses are highly pathogenic paramyxoviruses that recently emerged from flying foxes to cause serious disease outbreaks in humans and livestock in Australia, Malaysia, Singapore and Bangladesh. Their unique genetic constitution, high virulence and wide host range set them apart from other paramyxoviruses. These characteristics have led to their classification into the new genus Henpavirus within the family Paramyxoviridae and to their designation as Biosafety Level 4 pathogens. The fusion protein, an enveloped glycoprotein essential for viral entry, belongs to the family of class I fusion proteins and is characterized by the presence of two heptad repeat (HR) regions, HR1 and HR2. These two regions associate to form a fusion-active hairpin conformation that juxtaposes the viral and cellular membranes to facilitate membrane fusion and enable subsequent viral entry. The Hendra and Nipah virus fusion core proteins were crystallized and their structures determined to 2.2 A resolution. The Nipah and Hendra fusion core structures are six-helix bundles with three HR2 helices packed against the hydrophobic grooves on the surface of a central coiled coil formed by three parallel HR1 helices in an oblique antiparallel manner. Because of the high level of conservation in core regions, it is proposed that the Nipah and Hendra virus fusion cores can provide a model for membrane fusion in all paramyxoviruses. The relatively deep grooves on the surface of the central coiled coil represent a good target site for drug discovery strategies aimed at inhibiting viral entry by blocking hairpin formation.
Variants of Coconut cadang-cadang viroid have been identified in a plantation oil palm growing in Malaysia. Three size classes are described, comprising 297, 293, and 270 nt. Compared with the 296-nt form of coconut cadang-cadang viroid (CCCVd), all variants substituted C31 --> U in the pathogenicity domain and A175 --> C in the right-hand terminus. Other mutations and deletions accounted for the different sizes. These are the first sequences reported for variants of Coconut cadang-cadang viroid in a species other than coconut palm, and this is the first evidence that variants closely related to CCCVd occur outside the Philippines.
The DNA sequences encompassing two hypervariable regions, VD II and III of the 56 kDa immunodominant protein gene of 21 Malaysian strains of Orientia tsutsugamushi were determined. Two strains demonstrated a 100% DNA homology with the Gilliam prototype strain, and one with TH1817 strain and TA678 strain respectively. High percentages of DNA similarity (95-99%) were observed with Karp (4 strains), Gilliam (2 strains), TH1817 (4 strains), TC586 (3 strains) and TA763 (1 strain). The remaining strains demonstrated the highest DNA similarity with TA763 (1 strain, 89%), TA678 (1 strain, 86%) and TA686 (1 strain, 87%). Our study provides additional evidence on the existence and the genetic heterogeneity of TA strains of the Southeast Asia and their closely related strains in Malaysia.
beta-Galactosidase (EC. 3.2.1.23) from ripe carambola (Averrhoa carambola L. cv. B10) fruit was fractionated through a combination of ion exchange and gel filtration chromatography into four isoforms, viz. beta-galactosidase I, II, III and IV. This beta-galactosidases had apparent native molecular masses of 84, 77, 58 and 130 kDa, respectively. beta-Galactosidase I, the predominant isoform, was purified to electrophoretic homogeneity; analysis of the protein by SDS-PAGE revealed two subunits with molecular masses of 48 and 36 kDa. N-terminal amino acid sequence of the respective polypeptides shared high similarities albeit at different domains, with the deduced amino acid sequence of certain plant beta-galactosidases, thus, explaining the observed low similarity between the two subunits. beta-Galactosidase I was probably a heterodimer that have glycoprotein properties and a pI value of 7.2, with one of the potential glycosylation sites appeared to reside within the 48-kDa-polypeptide. The purified beta-galactosidase I was substantially active in hydrolyzing (1-->4)beta-linked spruce and a mixture of (1-->3)beta- and (1-->6)beta-linked gum arabic galactans. This isoform also had the capability to solubilize and depolymerize structurally intact pectins as well as to modify alkaline-soluble hemicelluloses, reflecting in part changes that occur during ripening.
Molecular variations of Spiranthes sinensis Ames var. australis (R.Br.) H. Hara et Kitam. ex Kitam. in Japan were examined to evaluate the validity of the seasonally differentiated groups and a dwarf form of the species, which is endemic to Yakushima Island, Japan. Sequence differences in the plastid trnL-F locus clearly distinguished Japanese S. sinensis var. australis from S. sinensis var. sinensis collected from Ryukyu. In contrast, the trnL-F sequence of S. sinensis var. australis from Sabah, Malaysia, clearly differed from that of Japanese S. sinensis var. australis, suggesting genetic heterogeneity of Spiranthes sinensis var. australis in Asia. Moreover, a molecular analysis based on the sequences of nuclear ITS1 regions indicated that there are two major groups of S. sinensis var. australis in Japan, with a geographic distribution boundary on Kyushu Island. However, the trnL-F and ITS1 sequences did not support the genetic differentiation of the seasonally differentiated groups or the dwarf form from the other Japanese individuals. Based on these molecular data, the systematic treatment of physiological and morphological variations in the Japanese population of S. sinensis. var. australis is discussed.
By generating a specialized cDNA library from the archaeon Sulfolobus solfataricus, we have identified 57 novel small non-coding RNA (ncRNA) candidates and confirmed their expression by Northern blot analysis. The majority was found to belong to one of two classes, either antisense or antisense-box RNAs, where the latter only exhibit partial complementarity to RNA targets. The most prominent group of antisense RNAs is transcribed in the opposite orientation to the transposase genes, encoded by insertion elements (transposons). Thus, these antisense RNAs may regulate transposition of insertion elements by inhibiting expression of the transposase mRNA. Surprisingly, the class of antisense RNAs also contained RNAs complementary to tRNAs or sRNAs (small-nucleolar-like RNAs). For the antisense-box ncRNAs, the majority could be assigned to the class of C/D sRNAs, which specify 2'-O-methylation sites on rRNAs or tRNAs. Five C/D sRNAs of this group are predicted to target methylation at six sites in 13 different tRNAs, thus pointing to the widespread role of these sRNA species in tRNA modification in Archaea. Another group of antisense-box RNAs, lacking typical C/D sRNA motifs, was predicted to target the 3'-untranslated regions of certain mRNAs. Furthermore, one of the ncRNAs that does not show antisense elements is transcribed from a repeat unit of a cluster of small regularly spaced repeats in S. solfataricus which is potentially involved in replicon partitioning. In conclusion, this is the first report of stably expressed antisense RNAs in an archaeal species and it raises the prospect that antisense-based mechanisms are also used widely in Archaea to regulate gene expression.
Nucleotide sequence comparison of the L gene of the Malaysian neurotropic-viscerotropic velogenic NDV strain AF2240 with other NDV strains revealed a single nucleotide insertion at position 3870. This mutation is compensated by a nucleotide deletion downstream at position 3958 which results in two forms of the L proteins containing a 30-amino acid substitution in Domain V. This compensatory mutation does not correlate with the pathogenicity of the viral strains but it may affect the viral replication as Domain V is believed to play an important role in the replication of paramyxoviruses.
Tropical rainforests in South-East Asia have been affected by climatic fluctuations during past glacial eras. To examine how the accompanying changes in land areas and temperature have affected the genetic properties of rainforest trees in the region, we investigated the phylogeographic patterns of a widespread dipterocarp species, Shorea leprosula. Two types of DNA markers were used: expressed sequence tag-based simple sequence repeats and chloroplast DNA (cpDNA) sequence variations. Both sets of markers revealed clear genetic differentiation between populations in Borneo and those in the Malay Peninsula and Sumatra (Malay/Sumatra). However, in the south-western part of Borneo, genetic admixture of the lineages was observed in the two marker types. Coalescent simulation based on cpDNA sequence variation suggested that the two lineages arose 0.28-0.09 million years before present and that following their divergence migration from Malay/Sumatra to Borneo strongly exceeded migration in the opposite direction. We conclude that the genetic structure of S. leprosula was largely formed during the middle Pleistocene and was subsequently modified by eastward migration across the subaerially exposed Sunda Shelf.
The combination of two silent mutations, c.1311C>T in exon 11 and IVS11 T93C (glucose-6-phosphate dehydrogenase (G6PD) 1311T/93C), with unknown mechanism, have been reported in G6PD-deficient individuals in Asian populations including Malaysian aboriginal group, Negrito. Here, we report the screening of G6PD gene in 103 Negrito volunteers using denaturing high-performance liquid chromatography (dHPLC) and direct sequencing. A total of 48 individuals (46.6%) were G6PD deficient, 83.3% of these carried G6PD 1311T/93C with enzyme activity ranging from 1.8 to 4.8 U gHb(-1). Three novel single-nucleotide polymorphisms (SNPs), rs112950723, rs111485003 and rs1050757, were found in the G6PD 3'-untranslated region (UTR). Strong association was observed between haplotype 1311T/93C and rs1050757G, which is located inside the 35 bp AG-rich region. In silico analysis revealed that the transition of A to G at position rs1050757 makes significant changes in the G6PD mRNA secondary structure. Moreover, putative micro (mi)RNA target sites were identified in 3'-UTR of G6PD gene, two of these in the region encompassing rs1050757. It could be speculated that rs1050757 have a potential functional effect on the downregulation of mRNA and consequently G6PD deficiency either by affecting mRNA stability and translation or mirRNA regulation process. This is the first report of biochemical association of an SNP in 3'-UTR of G6PD gene and the possible role of mRNA secondary structure.
The sRNAs of bacterial pathogens are known to be involved in various cellular roles including environmental adaptation as well as regulation of virulence and pathogenicity. It is expected that sRNAs may also have similar functions for Burkholderia pseudomallei, a soil bacterium that can adapt to diverse environmental conditions, which causes the disease melioidosis and is also able to infect a wide variety of hosts.
Five flavonoids, 5-hydroxy-(6:7,3':4')-di(2,2-dimethylpyrano)flavone 1, carpachromene 2, cycloartocarpesin 3, norartocarpetin 4 and 2'-hydroxy-4,4',6'-trimethoxychalcone 5, along with three triterpenes, friedelin 6, lupeol 7 and 13-sitosterol 8 were isolated for the first time from the leaves of Artocarpus fulvicortex F.M. Jarrett. The structures of these compounds were established by analysis of their spectroscopic (1D and 2D NMR) and spectrometric (MS) data, as well as by comparison of these with those reported in the literature.
From 1989 to 2011 in Kuala Lumpur, Malaysia, multiple genotypes from both respiratory syncytial virus (RSV) subgroups were found co-circulating each year. RSV-A subgroup predominated in 12 out of 17years with the remaining years predominated by RSV-B subgroup. Local RSV strains exhibited temporal clustering with RSV strains reported in previous epidemiological studies. Every few years, the existing predominant genotype was replaced by a new genotype. The RSV-A genotypes GA2, GA5 and GA7 were replaced by NA1 and NA2, while BA became the predominant RSV-B genotype. A unique local cluster, BA12, was seen in 2009, and the recently-described ON1 genotype with 72-nt duplication emerged in 2011. Our findings will have important implications for future vaccine intervention.
A phylogeographic study of an economically important freshwater fish, the striped snakehead, Channa striata in Sundaland was carried out using data from mtDNA ND5 gene target to elucidate genetic patterning. Templates obtained from a total of 280 individuals representing 24 sampling sites revealed 27 putative haplotypes. Three distinct genetic lineages were apparent; 1)northwest Peninsular Malaysia, 2)southern Peninsular, east Peninsular, Sumatra and SW (western Sarawak) and 3) central west Peninsular and Malaysian Borneo (except SW). Genetic structuring between lineages showed a significant signature of natural geographical barriers that have been acting as effective dividers between these populations. However, genetic propinquity between the SW and southern Peninsular and east Peninsular Malaysia populations was taken as evidence of ancient river connectivity between these regions during the Pleistocene epoch. Alternatively, close genetic relationship between central west Peninsular Malaysia and Malaysian Borneo populations implied anthropogenic activities. Further, haplotype sharing between the east Peninsular Malaysia and Sumatra populations revealed extraordinary migration ability of C. striata (>500 km) through ancient connectivity. These results provide interesting insights into the historical and contemporary landscape arrangement in shaping genetic patterns of freshwater species in Sundaland.
A review of the taxonomic status of the Asian Slug Snake, Asthenodipsas vertebralis (Boulenger, 1900) based on an integrative taxonomic approach using molecular, morphological, color pattern, and ecological data indicate it is composed of three well supported monophyletic lineages: (1) Pulau Tioman and Fraser's Hill, Pahang and Bukit Larut, Perak; Peninsular Malaysia; (2) its sister lineage from Northern Sumatra; and (3) the remaining basal lineage from Peninsular Malaysia. Furthermore, we consider the high sequence divergence (6.3%-10.2%) between these lineages (especially in areas of sympatry) and discrete differences in their morphology, color pattern, and microhabitat preference as evidence they are not conspecific. As such, we resurrect the name A. tropidonotus (Lidth de Jeude, 1923) for the Sumatra populations, restrict the name A. vertebralis to the populations from Pulau Tioman, Genting Highlands, Fraser's Hill, Gunung Benom, and Bukit Larut that contain terrestrial, banded adults; and consider A. lasgalenensis sp. nov. to be restricted to the populations from Fraser's Hill, Cameron Highlands, and Bukit Larut that contain arboreal, unbanded adults.
A sponge-associated species of the genus Nippontonia new to science is described from Semporna, Sabah, Malaysia. The only other species in the genus is also known to be a sponge-dweller. The new species can be distinguished from its con- gener by a suite of characters mainly of the anterior appendages.
Many species of Trichoderma have attracted interest as agents for the biological control of soil borne fungal pathogens of a range of crop plants. Research on the biochemical mechanisms associated with this application has focused on the ability of these fungi to produce enzymes which lyse fungal cell walls, and antifungal antibiotics. An important group of the latter are the non-ribosomal peptides called peptaibols. In this study Trichoderma asperellum, a strain used in biological control in Malaysia, was found to produce the peptaibol, trichotoxin. This type of peptide molecule is synthesised by a peptide synthetase (PES) enzyme template encoded by a peptide synthetase (pes) gene. Using nucleotide sequences amplified from adenylation (A-) domains as probes, to hybridise against a lambda FIXII genomic library from T. asperellum, 25 clones were recovered. These were subsequently identified as representative of four groups based on their encoding properties for specific amino acid incorporation modules in a PES. This was based on analysis of their amino acid sequences which showed up to 86% identity to other PESs including TEX 1.
Disjunctive distributions across paleotropical regions in the Indian Ocean Basin (IOB) often invoke dispersal/vicariance debates. Exacum (Gentianaceae, tribe Exaceae) species are spread around the IOB, in Africa, Madagascar, Socotra, the Arabian peninsula, Sri Lanka, India, the Himalayas, mainland Southeast Asia including southern China and Malaysia, and northern Australia. The distribution of this genus was suggested to be a typical example of vicariance resulting from the breakup of the Gondwanan supercontinent. The molecular phylogeny of Exacum is in principle congruent with morphological conclusions and shows a pattern that resembles a vicariance scenario with rapid divergence among lineages, but our molecular dating analysis demonstrates that the radiation is too recent to be associated with the Gondwanan continental breakup. We used our dating analysis to test the results of DIVA and found that the program predicted impossible vicariance events. Ancestral area reconstruction suggests that Exacum originated in Madagascar, and divergence dating suggests its origin was not before the Eocene. The Madagascan progenitor, the most recent common ancestor of Exacum, colonized Sri Lanka and southern India via long-distance dispersals. This colonizer underwent an extensive range expansion and spread to Socotra-Arabia, northern India, and mainland Southeast Asia in the northern IOB when it was warm and humid in these regions. This widespread common ancestor retreated subsequently from most parts of these regions and survived in isolation in Socotra-Arabia, southern India-Sri Lanka, and perhaps mainland Southeast Asia, possibly as a consequence of drastic climatic changes, particularly the spreading drought during the Neogene. Secondary diversification from these surviving centers and Madagascar resulted in the extant main lineages of the genus. The vicariance-like pattern shown by the phylogeny appears to have resulted from long-distance dispersals followed by extensive range expansion and subsequent fragmentation. The extant African species E. oldenlandioides is confirmed to be recently dispersed from Madagascar.
Giardia duodenalis is a protozoan parasite that can cause significant diarrhoeal diseases. Knowledge of population genetics is a prerequisite for ascertaining the invasion patterns of this parasite. In order to infer evolutionary patterns that could not be uncovered based on the morphological features, a population genetic study with the incorporation of molecular marker was carried out to access the genetic structure of G. duodenalis isolated from the Malaysian population and the global populations.
Angiostrongylus cantonensis is a zoonotic parasite that causes eosinophilic meningitis in humans. Earlier work on its mitochondrial genome was based on long polymerase chain reaction method. To date, only the mitogenome of the isolates from China has been studied. We report here the complete mitogenome of the Thailand isolate based on next generation sequencing and compare the genetic diversity with other isolates. The mitogenome of the Thailand isolate (13,519bp) is longer than those of the China isolates (13,497-13,502bp). Five protein-coding genes (atp6, cox1, cox2, cob, nad2) show variations in length among the isolates. The stop codon of the Thailand isolate differs from the China and Taiwan isolates in 4 genes (atp6, cob, nad2, nad6). Additionally, the Thailand isolate has 4 incomplete T stop codon compared to 3 in the China and Taiwan isolates. The control region is longer in the Thailand isolate (258bp) than the China (230-236bp) and Taiwan (237bp) isolates. The intergenic sequence between nad4 and cox1 genes in the Thailand isolate lacks 2bp (indels) at the 5'-end of the sequence as well as differs at 7 other sites compared to the China and Taiwan isolates. In the Thailand isolate, 18 tRNAs lack the entire TΨC-arm, compared to 17 in the China isolate and 16 in the Taiwan isolate. Phylogenetic analyses based on 36 mt-genes, 12 PCGs, 2 rRNA genes, 22 tRNA genes and control region all indicate closer genetic affinity between the China and Taiwan isolates compared to the Thailand isolate. Based on 36 mt-genes, the inter-isolate genetic distance varies from p=3.2% between China and Taiwan isolates to p=11.6% between Thailand and China isolates. The mitogenome will be useful for population, phylogenetics and phylogeography studies.