Displaying publications 161 - 180 of 337 in total

Abstract:
Sort:
  1. Zulkifli, A.F., Tham, L.G., Perumal, N., Azzeme, A., Shukor, M.Y., Shaharuddin, N.A., et al.
    MyJurnal
    Acetylcholinesterase (AChE) is usually used as an inhibitive assay for insecticides. A lesser
    known property of AChE is its inhibition by heavy metals. In this work we evaluate an AChE
    from brains of striped snakehead (Channa striatus) wastes from aquaculture industry as an
    inhibitive assay for heavy metals. We discovered that the AChE was inhibited almost completely
    by Hg2+, Ag2+ and Cu2+ during an initial screening. When tested at various concentrations, the
    heavy metals exhibited exponential decay type inhibition curves. The calculated IC50 for the
    heavy metals Hg2+, Ag2+, Pb2+, Cu2+ and Cr6+ were 0.08432, 0.1008, 0.1255, 0.0871, and 0.1771,
    respectively. The IC50 for these heavy metals are comparable and some are lower than the IC50
    values from the cholinesterases from previously studied fish. The assay can be carried out in less
    than 30 minutes at ambient temperature.
    Matched MeSH terms: Insecticides
  2. Abubakar M. Umar, Tham, Lik Gin, Natarajan Perumal, Nur Adeela Yasid, Hassan Mohd Daud, Mohd Yunus Shukor
    MyJurnal
    Acetylcholinesterase (AChE) is usually used as an inhibitive assay for insecticides. A lesserknown
    property of AChE is its inhibition by heavy metals. In this work, we evaluate an AChE
    from brains of Clarias batrachus (catfish) exposed to wastes from aquaculture industry as an
    inhibitive assay for heavy metals. We discovered that the AChE was inhibited completely by
    Hg2+, Ag2+, Pb2+, Cu2+, Cd2+, Cr6+ and Zn2+ during initial screening. When tested at various
    concentrations, the heavy metals exhibited exponential decay type inhibition curves. The
    calculated IC50 (mg/L) for the heavy metals Ag2+, Cu2+, Hg2+, Cr6+ and Cd2+ were 0.088, 0.078,
    0.071, 0.87 and 0.913, respectively. The IC50 for these heavy metals are comparable, and some
    are lower than the IC50 values from the cholinesterases from previously studied fish. The assay
    can be carried out in less than 30 minutes at ambient temperature.
    Matched MeSH terms: Insecticides
  3. Miah MA, Elzaki MEA, Husna A, Han Z
    Arch Insect Biochem Physiol, 2019 Feb;100(2):e21525.
    PMID: 30511429 DOI: 10.1002/arch.21525
    Deltamethrin resistance in Laodelphax striatellus had been associated with its oxidative detoxification by overexpression of four cytochrome P450 monooxygenases like CYP353D1v2, CYP6FU1, CYP6AY3v2, and CYP439A1v3. The first three P450s have been validated for insecticide-metabolizing capability and only CYP6FU1 was found to degrade deltamethrin. In this study, an investigation was conducted to confirm the capability of CYP439A1v3 to degrade deltamethrin. The CYP439A1v3 was first expressed in Sf9 cell line and its recombinant enzyme was tested for metabolic activity against different insecticides using substrate depletion assay combined with metabolite identification. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and carbon monoxide (CO)-difference spectra analysis showed that the intact cytochrome P450 protein was successfully expressed. Tests with probe substrates proved its enzyme activity, as p-nitroanisole, ethoxycoumarin, and ethoxyresorufin were preferentially metabolized (specific activity 7.767 ± 1.22, 1.325 ± 0.37, and 0.355 ± 0.37 nmol/min per mg of protein, respectively) while only luciferin-HEGE was not. In vitro incubation of the recombinant CYP439A1v3 protein with deltamethrin revealed hydroxylation by producing hydroxydeltamethrin. On the contrary, no metabolite/metabolism was seen with nonpyrethroid insecticide, including imidacloprid, buprofezin, chlorpyrifos, and fipronil. To the best of our knowledge, this is the first study to link a CYP450 from family 439 to confer pyrethroid resistance to L. striatellus. This finding should help in the design of appropriate insecticide resistance management for control of this strain of L. striatellus.
    Matched MeSH terms: Insecticides
  4. Ong SQ
    Sains Malaysiana, 2016;45:777-785.
    Dengue is a major issue in Malaysia as the dramatic emerge of infection. Yet an effective vaccine or medicine is not
    yet available, although many attempts are undergoing. Dengue vector control is still considered the most effective way
    for controlling and preventing the transmission of dengue virus. Nonetheless, as the conventional approaches are less
    successful in managing the dengue transmission, it is time to review the current applied and other available approaches.
    Current dengue vector relied greatly on the chemical approach as space treatment either thermal or ULV fogging, however,
    the approach seem like under the expectation. Beside space treatment, new control methods for example biological
    control (bacterium Bacillus thuringiensis, predatory mosquito Toxorhynchites) and attractive trap were carried out
    at certain location of Malaysia. Moreover, new emerged approaches such as mass release of genetic modification or
    artificially Wolbachia infected male dengue vector for the objective of generating sterile offspring when mate with
    wild population is urge to be tested in Malaysia, although concerns have to be taken before the actual mass release. In
    conclusion, control of dengue vector shall not consist exclusively for a single approach, neither genetic modification
    of artificially Wolbachia infected technique, nor the conventional insecticidal treatment. It should, however, comprise
    of the environment management as the fundamental approach, a well-planned integrated control program and a good
    cooperation among the organization.
    Matched MeSH terms: Insecticides
  5. Elamathi N, Barik TK, Verma V, Velamuri PS, Bhatt RM, Sharma SK, et al.
    Parasitol Res, 2014 Oct;113(10):3859-66.
    PMID: 25098343 DOI: 10.1007/s00436-014-4054-y
    The WHO adult susceptibility test is in use for insecticide resistance monitoring. Presently, materials are being imported from the Universiti Sains Malaysia, Malaysia and sometimes it is cost prohibitive. As an alternative, we present here a method of bottle bioassay using indigenous material. Different aspects related to the assay were studied and validated in the field. Bottle assay was standardized in the laboratory by using locally sourced material and laboratory-maintained insecticide-susceptible Anopheles stephensi and Aedes aegypti strains against technical grade deltamethrin and cyfluthrin insecticides dissolved in ethanol in a range of different concentrations. The frequency of use of the deltamethrin-coated bottles and shelf-life were determined. Discriminating dose for deltamethrin and cyfluthrin was 10 μg against An. stephensi and 2 μg against Ae. aegypti females. Insecticide-coated bottles stored at 25 to 35 °C can be used for three exposures within 7 days of coating. The study carried out in the laboratory was validated on wild caught An. culicifacies in the states of Odisha and Chhattisgarh against deltamethrin-coated bottles in comparison to WHO adult susceptibility test. Results of the study indicated that deltamethrin-coated bottles were effective up to three exposures within 7 days of coating for field population and 100% mortality was recorded within 35 min as observed in laboratory studies for field collected susceptible population. Also in the WHO adult susceptibility test, 100% knock-down within 35 min and 100% mortality after 24 h holding period were observed in susceptible population, while in it was 50% knock-down in 1 h and 64% mortality after 24 h holding period for resistant population (50% mortality in bottle assay in 60 min). The bottle assay can be used as an alternative to the WHO adult susceptibility test both in the laboratory and field for monitoring insecticide resistance in mosquito vectors using locally sourced material.
    Matched MeSH terms: Insecticides/pharmacology*
  6. Lee-Yin C, Ismaill BS, Salmijah S, Halimah M
    J Environ Biol, 2013 Sep;34(5):957-61.
    PMID: 24558812
    The influence of temperature, moisture and organic matter on the persistence of cyfluthrin was determined using three types of Malaysian soils, namely clay, clay loam and sandy clay loam obtained from a tomato farm in Cameron Highlands, Pahang. The persistence of cyfluthrin was observed in the laboratory at two temperature levels of 25 and 35 degreeC and field water capacity of 30 and 80%. Treated soil samples were incubated in a growth chamber for 1, 2, 3, 5, 7, 10, 14, 21 and 28 days. The results from the incubation studies showed that temperature and organic matter content significantly reduced the half-life (t1/2) values of cyfluthrin in the three soil types, but moisture content had very little effect. It was observed that cyfluthrin persisted longer at lower temperature and moisture content and higher organic matter content in all the three soil types. The present study demonstrated that under the tropical conditions of Malaysia, cyfluthrin dissipated rapidly in soils compared to its dissipation in soils of temperate regions, evidently due to high temperature.
    Matched MeSH terms: Insecticides/metabolism*
  7. Arip MN, Heng LY, Ahmad M, Ujang S
    Talanta, 2013 Nov 15;116:776-81.
    PMID: 24148473 DOI: 10.1016/j.talanta.2013.07.065
    The characteristics of a potentiometric biosensor for the determination of permethrin in treated wood based on immobilised cells of the fungus Lentinus sajor-caju on a potentiometric transducer are reported this paper. The potentiometric biosensor was prepared by immobilisation of the fungus in alginate gel deposited on a pH-sensitive transducer employing a photocurable acrylic matrix. The biosensor gave a good response in detecting permethrin over the range of 1.0-100.0 µM. The slope of the calibration curve was 56.10 mV/decade with detection limit of 1.00 µM. The relative standard deviation for the sensor reproducibility was 4.86%. The response time of the sensor was 5 min at optimum pH 8.0 with 1.00 mg/electrode of fungus L. sajor-caju. The permethrin biosensor performance was compared with the conventional method for permethrin analysis using high performance liquid chromatography (HPLC), and the analytical results agreed well with the HPLC method (at 95% confidence limit). There was no interference from commonly used organophosphorus pesticides such as diazinon, parathion, paraoxon, and methyl parathion.
    Matched MeSH terms: Insecticides/analysis*
  8. Chan HH, Zairi J
    J Med Entomol, 2013 Mar;50(2):362-70.
    PMID: 23540125
    Insecticide resistance has become a serious issue in vector management programs. Information on insecticidal resistance and its associated mechanisms is important for successful insecticide resistance management. The selection of a colony of permethrin-resistant Aedes albopictus (Skuse) (Diptera: Culicidae), originating from Penang Island, Malaysia, yielded high larval-specific resistance to permethrin and cross-resistance to deltamethrin. Synergism assays showed that the major mechanism underlying this resistance involves cytochrome P450 monooxygenase. The resistance is autosomal, polygenically inherited and incompletely dominant (D = 0.26). Resistant larvae were reared under different conditions to assess the fitness costs. Under high larval density, larval development time of the resistant SGI strain was significantly longer than the susceptible VCRU strain. In both high- and low-density conditions SGI showed a lower rate of emergence and survival compared with the VCRU strain. Resistant larvae were more susceptible to predation by Toxorhynchites splendens (Wiedemann) (Diptera: Culicidae) larvae. The body size of SGI females reared under high-density conditions was larger compared with females of the susceptible strain. SGI females survived longer when starved than did VCRU females. The energy reserve upon eclosion was positively correlated with the size of the adults.
    Matched MeSH terms: Insecticides/pharmacology*
  9. Kwa SK, Sinniah D, Tan KK
    Aust Fam Physician, 2012 Sep;41(9):707-9.
    PMID: 22962649
    An infant, aged 48 days, is brought in by her mother to her doctor because of a rash that started during the neonatal period.
    Matched MeSH terms: Insecticides/therapeutic use
  10. Leong SC, Abang F, Beattie A, Kueh RJ, Wong SK
    ScientificWorldJournal, 2012;2012:651416.
    PMID: 22629178 DOI: 10.1100/2012/651416
    Aspects of the incidence and spread of the citrus disease huanglongbing (HLB) in relation to the vector Diaphorina citri population fluctuation were studied from January 1999 to December 2001 seasons in a 0.8 ha citrus orchard at Jemukan (1° 33'N, 110° 41'E), Southwest Sarawak in Malaysia. In relation to insecticide and horticultural mineral oils (HMOs) use, levels of HLB infection rose quite rapidly over the next 3 years in the unsprayed control and less rapidly in the other treatments such as imidacloprid, nC24HMO, and triazophos/cypermethrin/chlorpyrifos. Levels of HLB as determined by Polymerase Chain Reaction (PCR) were 42.2%, 9.4%, 11.4%, and 22.7%, respectively. The effects of nC(24)HMO and conventional pesticides on the citrus psyllid population and parasitoids in citrus orchard were also determined.
    Matched MeSH terms: Insecticides/administration & dosage*
  11. Lakxmy AP, Xavier R, Reenajosephine CM, Lee YW, Marimuthu K, Kathiresan S, et al.
    Eur Rev Med Pharmacol Sci, 2011 Feb;15(2):149-55.
    PMID: 21434481
    To evaluate the mosquito larvicidal potential of the native Bacillus thuringiensis isolate BtReXO2, which was isolated from a tropical rain forest ecosystem in Malaysia. This study also aimed at determining the phenotypic and biochemical characteristics of the isolate.
    Matched MeSH terms: Insecticides/pharmacology*
  12. Leong SC, Kueh RJ
    ScientificWorldJournal, 2011;11:2330-8.
    PMID: 22203789 DOI: 10.1100/2011/753484
    Seasonal population of the fruit-piercing moths Eudocima spp. was monitored throughout the citrus growing seasons in a citrus orchard and in site adjacent to secondary forest from July 2007 to June 2009. The moth was detected practically throughout the year with activity lowest during the wet months (September-February) when fruits are still available and while highest during the dry months (May-June) which also coincided with the main fruiting season. The effects of an nC24 horticultural mineral oil (HMO) on the citrus fruit damage caused by fruit-piecing moths was also determined. The percent fruit damage was significantly lowest (P≤0.05) in HMO-treated plots (8.4), followed by Dimethoate-treated plots (11.6) and untreated plots (22.5). However, there was no significant difference between HMO and Dimethoate treated plots indicating HMO is effective in reducing percent fruit damage.
    Matched MeSH terms: Insecticides/pharmacology
  13. Aliakbarpour H, Che Salmah MR, Dieng H
    Environ Entomol, 2010 Oct;39(5):1409-19.
    PMID: 22546435 DOI: 10.1603/EN10066
    Thrips are key pests of mango, Mangifera indica (L.), in Malaysia, including the Northern Peninsular. As Penang has year-round equatorial climate and high of rainfall, the populations of thrips may be subject to variations in composition and size. With a goal of developing an appropriate control strategy, a survey was conducted in Penang to determine species composition and abundance in relation to some environmental factors. Sprayed and unsprayed orchards were sampled on weekly basis through two flowering seasons of 2009 using CO(2) collection technique. Larval population falling into the ground to pupate and adults emerging from the soil were investigated in both orchards. Thrips hawaiiensis (Morgan) and Scirtothrips dorsalis (Hood) were the most prevalent species in the sprayed and the unsprayed orchards, respectively. The abundance of thrips was high during the flowering period of the dry season and decreased during the flowering period of the rainy season. This latter period coincided with decreased temperature and increased relative humidity. Percentage of adult emergence from the soil was lower in the rainy season than recorded in the dry season in both orchards. Taken together, these observations suggest that T. hawaiiensis and S. dorsalis are the main thrips species pests of mango panicles in Penang. Direct control with insecticides focusing on these two species may help to reduce cosmetic injuries and other damages on mango fruits.
    Matched MeSH terms: Insecticides/pharmacology
  14. Salman JM, Hameed BH
    J Hazard Mater, 2010 Apr 15;176(1-3):814-9.
    PMID: 20031311 DOI: 10.1016/j.jhazmat.2009.11.107
    In this work, activated carbon was prepared from banana stalks (BSAC) waste to remove the insecticide carbofuran from aqueous solutions. The effects of contact time, initial carbofuran concentration, solution pH and temperature (30, 40 and 50 degrees C) were investigated. Adsorption isotherm, kinetics and thermodynamics of carbofuran on BSAC were studied. Equilibrium data were fitted to the Langmuir, Freundlich and Temkin isotherm models and the data best represented by the Langmuir isotherm. Thermodynamic parameters such as standard enthalpy (DeltaH(o)), standard entropy (DeltaS(o)) and standard free energy (DeltaG(o)) were evaluated. Regeneration efficiency of spent BSAC was studied using ethanol as a solvent. The efficiency was found to be in the range of 96.97-97.35%. The results indicated that the BSAC has good regeneration and reusability characteristics and can be used as alternative to present commercial activated carbon.
    Matched MeSH terms: Insecticides/isolation & purification
  15. Ahmad AL, Tan LS, Abd Shukor SR
    J Hazard Mater, 2008 Jun 15;154(1-3):633-8.
    PMID: 18055106
    This study examined the performance of nanofiltration membranes to retain atrazine and dimethoate in aqueous solution under different pH conditions. Four nanofiltration membranes, NF90, NF200, NF270 and DK are selected to be examined. The operating pressure, feed pesticide and stirring rate were kept constant at 6x10(5) Pa, 10 mg/L and 1000 rpm. It was found that increasing the solution's pH increased atrazine and dimethoate rejection but reduced the permeate flux performance for NF200, NF270 and DK. However, NF90 showed somewhat consistent performance in both rejection and permeate flux regardless of the solution's pH. NF90 maintained above 90% of atrazine rejection and approximately 80% of dimethoate rejection regardless of the changes in solution's pH. Thus, NF90 is deemed the more suitable nanofiltration membrane for atrazine and dimethoate retention from aqueous solution compared to NF200, NF270 and DK.
    Matched MeSH terms: Insecticides/chemistry*
  16. Ahmad AL, Tan LS, Shukor SR
    J Hazard Mater, 2008 Feb 28;151(1):71-7.
    PMID: 17587496
    In order to produce sufficient food supply for the ever-increasing human population, pesticides usage is indispensable in the agriculture sector to control crop losses. However, the effect of pesticides on the environment is very complex as undesirable transfers occur continually among different environmental sections. This eventually leads to contamination of drinking water source especially for rivers located near active agriculture practices. This paper studied the application of nanofiltration membrane in the removal of dimethoate and atrazine in aqueous solution. Dimethoate was selected as the subject of study since it is being listed as one of the pesticides in guidelines for drinking water by World Health Organization. Nevertheless, data on effectiveness of dimethoate rejection using membranes has not been found so far. Meanwhile, atrazine is classified as one of the most commonly used pesticides in Malaysia. Separation was done using a small batch-type membrane separation cell with integrated magnetic stirrer while concentration of dimethoate and atrazine in aqueous solution was analyzed using high performance liquid chromatography (HPLC). Four nanofiltration membranes NF90, NF200, NF270 and DK were tested for their respective performance to separate dimethoate and atrazine. Of all four membranes, NF90 showed the best performance in retention of dimethoate and atrazine in water.
    Matched MeSH terms: Insecticides/isolation & purification*
  17. Nathan S, Aziz DH, Mahadi NM
    Curr Microbiol, 2006 Nov;53(5):412-5.
    PMID: 17036210
    We constructed recombinant phage particles displaying the Bacillus thuringiensis Cry1Ba4 active toxin using the pfUSE5 and pComb3X phagemid vectors. The recombinant phage particles were screened and evaluated for displayed biologically active Cry1Ba4 toxin against the target insect larvae. Concurrent expression of Cry1Ba4 protoxin was carried out using the pETBlue -2 plasmid expression vector in Escherichia coli Tuner (DE3)pLacI and the protoxin was successfully expressed at a size of 129 kDa. In the bioassay, 3.30 mg crude extract of Cry1Ba4 protoxin, 9.35 x 10(9) TU and 7.70 x 10(9) TU of induced recombinant phage particles carrying Cry1Ba4 active toxin displayed on pComb3X and pFUSE5, respectively, demonstrated mortality of greater than 85% against Plutella xylostella (third-instar) within 48 hours. Thus, we have successfully displayed the Cry1Ba4 activated toxin on the surface of a phage and demonstrated toxicity towards larvae.
    Matched MeSH terms: Insecticides/pharmacology*
  18. Singh RK, Haq S, Kumar G, Dhiman RC
    J Commun Dis, 2013 Mar-Jun;45(1-2):1-16.
    PMID: 25141549
    Anopheles annularis is widely distributed mosquito species all over the country. An. annularis has been incriminated as a malaria vector in India, Sri Lanka, Bangladesh, Myanmar, Indonesia, Malaysia and China. In India, it has been reported to play an important role in malaria transmission as a secondary vector in certain parts of Assam, West Bengal and U.P. In Odisha and some neighbouring countries such as Sri Lanka, Nepal and Myanmar it has been recognised as a primary vector of malaria. This is a species complex of two sibling species A and B but the role of these sibling species in malaria transmission is not clearly known. An. annularis is resistant to DDT and dieldrin/HCH and susceptible to malathion and synthetic pyrethorides in most of the parts of India. In view of rapid change in ecological conditions, further studies are required on the bionomics of An. annularis and its role in malaria transmission in other parts of the country. Considering the importance of An. annularis as a malaria vector, the bionomics and its role in malaria transmission has been reviewed in this paper. In this communication, an attempt has been made to review its bionomics and its role as malaria vector. An. annularis is a competent vector of malaria, thus, due attention should be paid for its control under the vector control programmes specially in border states where it is playing a primary role in malaria transmission.
    Matched MeSH terms: Insecticides/pharmacology
  19. Gurr GM, Lu Z, Zheng X, Xu H, Zhu P, Chen G, et al.
    Nat Plants, 2016 02 22;2:16014.
    PMID: 27249349 DOI: 10.1038/nplants.2016.14
    Global food security requires increased crop productivity to meet escalating demand(1-3). Current food production systems are heavily dependent on synthetic inputs that threaten the environment and human well-being(2,4,5). Biodiversity, for instance, is key to the provision of ecosystem services such as pest control(6,7), but is eroded in conventional agricultural systems. Yet the conservation and reinstatement of biodiversity is challenging(5,8,9), and it remains unclear whether the promotion of biodiversity can reduce reliance on inputs without penalizing yields on a regional scale. Here we present results from multi-site field studies replicated in Thailand, China and Vietnam over a period of four years, in which we grew nectar-producing plants around rice fields, and monitored levels of pest infestation, insecticide use and yields. Compiling the data from all sites, we report that this inexpensive intervention significantly reduced populations of two key pests, reduced insecticide applications by 70%, increased grain yields by 5% and delivered an economic advantage of 7.5%. Additional field studies showed that predators and parasitoids of the main rice pests, together with detritivores, were more abundant in the presence of nectar-producing plants. We conclude that a simple diversification approach, in this case the growth of nectar-producing plants, can contribute to the ecological intensification of agricultural systems.
    Matched MeSH terms: Insecticides/toxicity
  20. Yu KX, Wong CL, Ahmad R, Jantan I
    Molecules, 2015;20(8):14082-102.
    PMID: 26247928 DOI: 10.3390/molecules200814082
    The ever-increasing threat from infectious diseases and the development of insecticide resistance in mosquito populations drive the global search for new natural insecticides. The aims of this study were to evaluate the mosquitocidal activity of the extracts of seaweed Bryopsis pennata against dengue vectors Aedes aegypti and Aedes albopictus, and determine the seaweed's toxic effect on brine shrimp nauplii (as a non-target organism). In addition, the chemical compositions of the active larvicidal extract and fraction were analyzed by using liquid chromatography-mass spectrometry (LC-MS). Chloroform extract exhibited strong ovicidal activity (with LC50 values of 229.3 and 250.5 µg/mL) and larvicidal activity against Ae. aegypti and Ae. albopictus. The larvicidal potential of chloroform extract was further ascertained when its A7 fraction exhibited strong toxic effect against Ae. aegypti (LC50 = 4.7 µg/mL) and Ae. albopictus (LC50 = 5.3 µg/mL). LC-MS analysis of the chloroform extract gave a tentative identification of 13 compounds; Bis-(3-oxoundecyl) tetrasulfide was identified as the major compound in A7 fraction. Methanol extract showed strong repellent effect against female oviposition, along with weak adulticidal activity against mosquito and weak toxicity against brine shrimp nauplii. The mosquitocidal results of B. pennata suggest further investigation for the development of effective insecticide.
    Matched MeSH terms: Insecticides/toxicity*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links