Displaying publications 161 - 180 of 1089 in total

Abstract:
Sort:
  1. Baharum Z, Akim AM, Taufiq-Yap YH, Hamid RA, Kasran R
    Molecules, 2014 Nov 10;19(11):18317-31.
    PMID: 25389662 DOI: 10.3390/molecules191118317
    The aims of this study were to determine the antioxidant and antiproliferative activity of the following Theobroma cacao plant part methanolic extracts: leaf, bark, husk, fermented and unfermented shell, pith, root, and cherelle. Antioxidant activity was determined using 2,2-diphenyl-2-picrylhydrazyl (DPPH), thiobarbituric acid-reactive substances (TBARS), and Folin-Ciocalteu assays; the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium (MTT) assay was used to determine antiproliferative activity. The root extract had the highest antioxidant activity; its median effective dose (EC50) was 358.3±7.0 µg/mL and total phenolic content was 22.0±1.1 g GAE/100 g extract as compared to the other methanolic plant part extracts. Only the cherelle extract demonstrated 10.4%±1.1% inhibition activity in the lipid peroxidation assay. The MTT assay revealed that the leaf extract had the highest antiproliferative activity against MCF-7 cells [median inhibitory concentration (IC50)=41.4±3.3 µg/mL]. Given the overall high IC50 for the normal liver cell line WRL-68, this study indicates that T. cacao methanolic extracts have a cytotoxic effect in cancer cells, but not in normal cells. Planned future investigations will involve the purification, identification, determination of the mechanisms of action, and molecular assay of T. cacao plant extracts.
    Matched MeSH terms: Cell Proliferation/drug effects*
  2. Sadrkhanloo M, Paskeh MDA, Hashemi M, Raesi R, Bahonar A, Nakhaee Z, et al.
    Pathol Res Pract, 2023 Nov;251:154902.
    PMID: 37922723 DOI: 10.1016/j.prp.2023.154902
    Osteosarcoma (OS) is a malignant bone carcinoma that affects people in childhood and adulthood. The heterogeneous nature and chromosomal instability represent certain characteristics of OS cells. These cancer cells grow and migrate abnormally, making the prognosis undesirable for patients. Conventional and current treatments fail to completely eradicate tumor cells, so new therapeutics targeting genes may be considered. PI3K/Akt is a regulator of events such as growth, cell death, migration, and differentiation, and its expression changes during cancer progression. PTEN reduces PI3K/Akt expression, and its mutations and depletions have been reported in various tumors. Experimental evidence shows that there is upregulation of PI3K/Akt and downregulation of PTEN in OS. Increasing PTEN expression may suppress PI3K/Akt to minimize tumorigenesis. In addition, PI3K/Akt shows a positive association with growth, metastasis, EMT and metabolism of OS cells and inhibits apoptosis. Importantly, overexpression of PI3K/Akt causes drug resistance and radio-resistance and its level can be modulated by miRNAs, lncRNAs and circRNAs. Silencing PI3K/Akt by compounds and drugs can suppress OS. Here, we review in detail the function of the PTEN/PI3K/Akt in OS, revealing its biological function, function in tumor progression, resistance to therapy, and pharmacological significance.
    Matched MeSH terms: Cell Proliferation/genetics
  3. Kamarudin MNA, Sarker MMR, Zhou JR, Parhar I
    J Exp Clin Cancer Res, 2019 Dec 12;38(1):491.
    PMID: 31831021 DOI: 10.1186/s13046-019-1495-2
    Growing evidence showed the increased prevalence of cancer incidents, particularly colorectal cancer, among type 2 diabetic mellitus patients. Antidiabetic medications such as, insulin, sulfonylureas, dipeptyl peptidase (DPP) 4 inhibitors and glucose-dependent insulinotropic peptide (GLP-1) analogues increased the additional risk of different cancers to diabetic patients. Conversely, metformin has drawn attention among physicians and researchers since its use as antidiabetic drug exhibited beneficial effect in the prevention and treatment of cancer in diabetic patients as well as an independent anticancer drug. This review aims to provide the comprehensive information on the use of metformin at preclinical and clinical stages among colorectal cancer patients. We highlight the efficacy of metformin as an anti-proliferative, chemopreventive, apoptosis inducing agent, adjuvant, and radio-chemosensitizer in various colorectal cancer models. This multifarious effects of metformin is largely attributed to its capability in modulating upstream and downstream molecular targets involved in apoptosis, autophagy, cell cycle, oxidative stress, inflammation, metabolic homeostasis, and epigenetic regulation. Moreover, the review highlights metformin intake and colorectal cancer risk based on different clinical and epidemiologic results from different gender and specific population background among diabetic and non-diabetic patients. The improved understanding of metformin as a potential chemotherapeutic drug or as neo-adjuvant will provide better information for it to be used globally as an affordable, well-tolerated, and effective anticancer agent for colorectal cancer.
    Matched MeSH terms: Cell Proliferation/drug effects
  4. Zakaria KN, Amid A, Zakaria Z, Jamal P, Ismail A
    Asian Pac J Cancer Prev, 2019 Feb 26;20(2):563-567.
    PMID: 30803221
    Problem statement: Clinicanthus nutans has been used by Malaysian since long time ago. It is used to treat many diseases including cancer. Many studies carried out on its crude extract but no clear report on the specific secondary metabolites responsible for its nature in treating selected diseases. Objective: This study aims to confirm the practice carried out by many people on the usage of Clinicanthus nutans in treating cancer. Methods: C. nutans leaves were extracted by methanol. Thin layer chromatography was used to identify the suitable solvent for fractions separation. The fractions were then separated at larger volume using gravity column chromatography. Each fraction was tested on its anti-proliferative activity on Hep-G2 liver cancer cells by MTT assay. The phytochemical screening was carried out to identify the bioactive compound based on qualitative analysis. Results: The fraction 2 (F2) of C. nutans showed the lowest IC50 value of 1.73 μg/ml against Hep-G2 cancer cells, and it is identified as triterpenes. Conclusion: The fraction F2 identified as triterpenes isolated from C. nutans has potential as an anti-proliferative agent against liver cancer.
    Matched MeSH terms: Cell Proliferation/drug effects*
  5. Li X, Peng B, Li J, Tian M, He L
    Protein Pept Lett, 2023;30(12):992-1000.
    PMID: 38013437 DOI: 10.2174/0109298665245603231106050224
    OBJECTIVES: We aim to investigate the regulatory mechanisms of miR-455-5p/SOCS3 pathway that underlie the proliferation, migration, and invasion of triple-negative breast cancer (TNBC) cells.

    METHODS: Reverse transcription-quantitative PCR (RT-qPCR) was used to detect miR-455-5p expression in breast cancer tissues and cell lines. CCK8 and Transwell assays were conducted to assess the effects of miR-455-5p on breast cancer line proliferation, migration, and invasion. SOCS3 expression level in breast cancer tissues and cell lines was determined by qPCR and western blotting. The targeting relationship between miR-455-5p and SOCS3 was determined by dual luciferase reporter gene assay in different breast cancer cell lines. Finally, the upstream and downstream regulatory association between miR-455-5p and SOCS3 was confirmed in breast cancer cells by CCK8, western blot, and Transwell assays.

    RESULTS: MiR-455-5p expression was up-regulated in breast cancer tissues; miR-455-5p regulates TNBC proliferation, migration, and invasion of TNBC. SOCS3 was the direct target of miR-455-5p and was down-regulated in breast cancer. Interference with SOCS3 reversed the inhibitory effect of the miR-455-5p inhibitor on breast cancer cells' malignant potential.

    CONCLUSION: MiR-455-5p promotes breast cancer progression by targeting the SOCS3 pathway and may be a potential therapeutic target for breast cancer.

    Matched MeSH terms: Cell Proliferation/genetics
  6. Li W, Wang F, Wang X, Xu W, Liu F, Hu R, et al.
    J Biochem Mol Toxicol, 2024 Feb;38(2):e23645.
    PMID: 38348716 DOI: 10.1002/jbt.23645
    Prostate cancer (PCa) is an extremely common genitourinary malignancy among elderly men. Many evidence have shown the efficacy of curcumin (CUR) in inhibiting the progression of PCa. However, the pharmacological function of CUR in PCa is still not quite clear. In this research, CUR was found to suppress the proliferation and enhance the apoptotic rate in in vitro PCa cell models in a dose- and time-dependent manner. In a xenograft animal model, the administration of CUR contributed to a significant decrease in the growth of the xenograft tumor induced by the transplanted PC-3 cells. Ubiquitin-conjugating enzyme E2 C is implicated in the modulation of multiple types of cancers. In humans, the expression levels of UBE2C are significantly higher in PCa versus benign prostatic hyperplasia. Treatment with CUR decreased the expression of UBE2C, whereas it increased miR-483-3p expression. In contrast with the control mice, the CUR-treated mice showed a significant reduction in UBE2C and Ki-67 in PCa cells. The capability of proliferation, migration, and invasion of PCa cells was inhibited by the knockdown of UBE2C mediated by siRNA. Furthermore, dual luciferase reporter gene assay indicated the binding of miR-483-3p to UBE2C. In summary, CUR exerts its antitumor effects through regulation of the miR-483-3p/UBE2C axis by decreasing UBE2C and increasing miR-483-3p. The findings may also provide new molecular markers for PCa diagnosis and treatment.
    Matched MeSH terms: Cell Proliferation/genetics
  7. Lin GW, Xu C, Chen K, Huang HQ, Chen J, Song B, et al.
    Lancet Oncol, 2020 Feb;21(2):306-316.
    PMID: 31879220 DOI: 10.1016/S1470-2045(19)30799-5
    BACKGROUND: Extranodal natural killer T-cell lymphoma (NKTCL; nasal type) is an aggressive malignancy with a particularly high prevalence in Asian and Latin American populations. Epstein-Barr virus infection has a role in the pathogenesis of NKTCL, and HLA-DPB1 variants are risk factors for the disease. We aimed to identify additional novel genetic variants affecting risk of NKTCL.

    METHODS: We did a genome-wide association study of NKTCL in multiple populations from east Asia. We recruited a discovery cohort of 700 cases with NKTCL and 7752 controls without NKTCL of Han Chinese ancestry from 19 centres in southern, central, and northern regions of China, and four independent replication samples including 717 cases and 12 650 controls. Three of these independent samples (451 cases and 5301 controls) were from eight centres in the same regions of southern, central, and northern China, and the fourth (266 cases and 7349 controls) was from 11 centres in Hong Kong, Taiwan, Singapore, and South Korea. All cases had primary NKTCL that was confirmed histopathologically, and matching with controls was based on geographical region and self-reported ancestry. Logistic regression analysis was done independently by geographical regions, followed by fixed-effect meta-analyses, to identify susceptibility loci. Bioinformatic approaches, including expression quantitative trait loci, binding motif and transcriptome analyses, and biological experiments were done to fine-map and explore the functional relevance of genome-wide association loci to the development of NKTCL.

    FINDINGS: Genetic data were gathered between Jan 1, 2008, and Jan 23, 2019. Meta-analysis of all samples (a total of 1417 cases and 20 402 controls) identified two novel loci significantly associated with NKTCL: IL18RAP on 2q12.1 (rs13015714; p=2·83 × 10-16; odds ratio 1·39 [95% CI 1·28-1·50]) and HLA-DRB1 on 6p21.3 (rs9271588; 9·35 × 10-26 1·53 [1·41-1·65]). Fine-mapping and experimental analyses showed that rs1420106 at the promoter of IL18RAP was highly correlated with rs13015714, and the rs1420106-A risk variant had an upregulatory effect on IL18RAP expression. Cell growth assays in two NKTCL cell lines (YT and SNK-6 cells) showed that knockdown of IL18RAP inhibited cell proliferation by cell cycle arrest in NKTCL cells. Haplotype association analysis showed that haplotype 47F-67I was associated with reduced risk of NKTCL, whereas 47Y-67L was associated with increased risk of NKTCL. These two positions are component parts of the peptide-binding pocket 7 (P7) of the HLA-DR heterodimer, suggesting that these alterations might account for the association at HLA-DRB1, independent of the previously reported HLA-DPB1 variants.

    INTERPRETATION: Our findings provide new insights into the development of NKTCL by showing the importance of inflammation and immune regulation through the IL18-IL18RAP axis and antigen presentation involving HLA-DRB1, which might help to identify potential therapeutic targets. Taken in combination with additional genetic and other risk factors, our results could potentially be used to stratify people at high risk of NKTCL for targeted prevention.

    FUNDING: Guangdong Innovative and Entrepreneurial Research Team Program, National Natural Science Foundation of China, National Program for Support of Top-Notch Young Professionals, Chang Jiang Scholars Program, Singapore Ministry of Health's National Medical Research Council, Tanoto Foundation, National Research Foundation Singapore, Chang Gung Memorial Hospital, Recruitment Program for Young Professionals of China, First Affiliated Hospital and Army Medical University, US National Institutes of Health, and US National Cancer Institute.

    Matched MeSH terms: Cell Proliferation*
  8. Citalingam K, Abas F, Lajis NH, Othman I, Naidu R
    Molecules, 2015 Feb 17;20(2):3406-30.
    PMID: 25690296 DOI: 10.3390/molecules20023406
    Curcumin has poor in vivo absorption and bioavailability, highlighting a need for new curcumin analogues with better characteristics in these aspects. The aim of this study is to determine the anti-cancer properties of four selected curcumin analogues, on the cytotoxicity, proliferative and apoptotic effects on androgen-independent human prostate cancer cells (PC-3 and DU 145). Initial cytotoxicity screening showed MS17 has the highest cell inhibitory effect, with EC50 values of 4.4 ± 0.3 and 4.1 ± 0.8 µM, followed by MS13 (7.5 ± 0.1 and 7.4 ± 2.6 µM), MS49 (14.5 ± 1.2 and 12.3 ± 2.3 µM) and MS40E (28.0 ± 7.8 and 30.3 ± 1.9 µM) for PC-3 and DU 145 cells, respectively. Time-dependent analysis also revealed that MS13 and MS17 displayed a greater anti-proliferative effect than the other compounds. MS17 was chosen based on the high selectivity index value for further analysis on the morphological and biochemical hallmarks of apoptosis. Fluorescence microscopy analysis revealed apoptotic changes in both treated prostate cancer cells. Relative caspase-3 activity increased significantly at 48 h in PC-3 and 12 h in DU 145 cells. Highest enrichment of free nucleosomes was noted at 48 h after treatment with MS17. In conclusion, MS17 demonstrated anti-proliferative effect and induces apoptosis in a time and dose-dependent manner suggesting its potential for development as an anti-cancer agent for androgen-independent prostate cancer.
    Matched MeSH terms: Cell Proliferation/drug effects*
  9. Lee JW, Ong TG, Samian MR, Teh AH, Watanabe N, Osada H, et al.
    Sci Rep, 2021 Dec 17;11(1):24148.
    PMID: 34921163 DOI: 10.1038/s41598-021-03490-7
    Ageing-related proteins play various roles such as regulating cellular ageing, countering oxidative stress, and modulating signal transduction pathways amongst many others. Hundreds of ageing-related proteins have been identified, however the functions of most of these ageing-related proteins are not known. Here, we report the identification of proteins that extended yeast chronological life span (CLS) from a screen of ageing-related proteins. Three of the CLS-extending proteins, Ptc4, Zwf1, and Sme1, contributed to an overall higher survival percentage and shorter doubling time of yeast growth compared to the control. The CLS-extending proteins contributed to thermal and oxidative stress responses differently, suggesting different mechanisms of actions. The overexpression of Ptc4 or Zwf1 also promoted rapid cell proliferation during yeast growth, suggesting their involvement in cell division or growth pathways.
    Matched MeSH terms: Cell Proliferation*
  10. Faizan S, Wali AF, Talath S, Rehman MU, Sivamani Y, Nilugal KC, et al.
    Eur J Med Chem, 2024 Sep 05;275:116607.
    PMID: 38908102 DOI: 10.1016/j.ejmech.2024.116607
    Dihydropyrimidines are widely recognized for their diverse biological properties and are often synthesized by the Biginelli reactions. In this backdrop, a novel series of Biginelli dihydropyrimidines were designed, synthesized, purified, and analyzed by FT-IR, 1H NMR, 13C NMR, and mass spectrometry. Anticancer activity against MCF-7 breast cancer cells was evaluated as part of their cytotoxicity in comparison with the normal Vero cells. The cytotoxicity of dihydropyrimidines ranges from moderate to significant. Among the 38 dihydropyrimidines screened, compounds 16, 21, and 39 exhibited significant cytotoxicity. These 3 compounds were subjected to flow cytometry studies and EGFRwt Kinase inhibition assay using lapatinib as a standard. The study included evaluation for the inhibition of EGFR and HER2 expression at five different concentrations. At a concentration of 1000 nM compound 21 showed 98.51 % and 96.79 % inhibition of EGFR and HER2 expression. Moreover, compounds 16, 21 and 39 significantly inhibited EGFRwt activity with IC50 = 69.83, 37.21 and 76.79 nM, respectively. In addition, 3D-QSAR experiments were conducted to elucidate Structure activity relationships in a 3D grid space by comparing the experimental and predicted cytotoxic activities. Molecular docking studies were performed to validate the results by in silico method. All together, we developed a new series of Biginelli dihydropyrimidines as dual EGFR/HER2 inhibitors.
    Matched MeSH terms: Cell Proliferation/drug effects
  11. Ikram R, Shamsuddin SAA, Mohamed Jan B, Abdul Qadir M, Kenanakis G, Stylianakis MM, et al.
    Molecules, 2022 Jan 07;27(2).
    PMID: 35056690 DOI: 10.3390/molecules27020379
    Thanks to stem cells' capability to differentiate into multiple cell types, damaged human tissues and organs can be rapidly well-repaired. Therefore, their applicability in the emerging field of regenerative medicine can be further expanded, serving as a promising multifunctional tool for tissue engineering, treatments for various diseases, and other biomedical applications as well. However, the differentiation and survival of the stem cells into specific lineages is crucial to be exclusively controlled. In this frame, growth factors and chemical agents are utilized to stimulate and adjust proliferation and differentiation of the stem cells, although challenges related with degradation, side effects, and high cost should be overcome. Owing to their unique physicochemical and biological properties, graphene-based nanomaterials have been widely used as scaffolds to manipulate stem cell growth and differentiation potential. Herein, we provide the most recent research progress in mesenchymal stem cells (MSCs) growth, differentiation and function utilizing graphene derivatives as extracellular scaffolds. The interaction of graphene derivatives in human and rat MSCs has been also evaluated. Graphene-based nanomaterials are biocompatible, exhibiting a great potential applicability in stem-cell-mediated regenerative medicine as they may promote the behaviour control of the stem cells. Finally, the challenges, prospects and future trends in the field are discussed.
    Matched MeSH terms: Cell Proliferation/drug effects
  12. Su Q, Chen K, Ren J, Zhang Y, Han X, Leong SW, et al.
    J Mol Med (Berl), 2024 Dec;102(12):1471-1484.
    PMID: 39420137 DOI: 10.1007/s00109-024-02496-8
    Non-small cell lung cancer (NSCLC) is a highly malignant tumor with a poor prognosis. Hypoxia conditions affect multiple cellular processes promoting the adaptation and progression of cancer cells via the activation of hypoxia-inducible factors (HIF) and subsequent transcription activation of their target genes. Preliminary studies have suggested that estrogen receptor β (ERβ) might play a promoting role in the progression of NSCLC. However, the precise mechanisms, particularly its connection to HIF-1α-mediated modulation under hypoxia, remain unclear. Our findings demonstrated that the overexpression of ERβ, not ERα, increased cell proliferation and inhibition of apoptosis in NSCLC cells and xenografts. Tissue microarray staining revealed a strong correlation between the protein expression of HIF-1α and ERβ. HIF-1α induced ERβ gene transcription and protein expression in CoCl2-induced hypoxia, 1% O2 incubation, or HIF-1α overexpressing cells. ChIP identified HIF-1α binding to a hypoxia response element in the ESR2 promoter. The suppression of HIF-1α and ERβ both in vitro and in vivo effectively reduced the tumor growth, thus emphasizing the promising prospects of targeting HIF-1α and ERβ as a therapeutic approach for the treatment of NSCLC. KEY MESSAGES: ERβ, not ERα, increases cell proliferation and inhibition of apoptosis in NSCLC cells and xenografts. A strong correlation exists between the protein expression of HIF-1α and ERβ. HIF-1α induced ERβ gene transcription and protein expression in hypoxic cells via binding to HRE in the ESR2 promoter. The suppression of HIF-1α and ERβ both in vitro and in vivo effectively reduced the NSCLC tumor growth.
    Matched MeSH terms: Cell Proliferation*
  13. Shintani T, Higaki M, Rosli SNZ, Okamoto T
    In Vitro Cell Dev Biol Anim, 2024 Jun;60(6):583-589.
    PMID: 38713345 DOI: 10.1007/s11626-024-00913-3
    Heparin-binding protein 17 (HBp17), first purified in 1991 from the conditioned medium of the human A431 squamous cell carcinoma (SCC) cell line, was later renamed fibroblast growth factor-binding protein 1 (FGFBP-1). HBp17/FGFBP-1 is specifically expressed and secreted by epithelial cells, and it reversibly binds to fibroblast growth factor (FGF)-1 and FGF-2, as well as FGFs-7, -10, and -22, indicating a crucial involvement in the transportation and function of these FGFs. Our laboratory has investigated and reported several studies to elucidate the function of HBp17/FGFBP-1 in SCC cells and its potential as a molecular therapeutic target. HBp17/FGFBP-1 transgene exoression in A431-4 cells, a clonal subline of A431 that lacks tumorigenicity and does not express HBp17/FGFBP-1, demonstrated a significantly enhanced proliferation in vitro compared with A431-4 cells, and it acquired tumorigenicity in the subcutis of nude mice. Knockout (KO) of the HBp17/FGFBP-1 by genome editing significantly suppressed tumor growth, cell motility, and tumorigenicity compared with control cells. A comprehensive analysis of expressed molecules in both cell types revealed that molecules that promote epithelial cell differentiation were highly expressed in HBp17/FGFBP-1 KO cells. Additionally, we reported that 1α,25(OH)2D3 or eldecalcitol (ED-71), which is an analog of 1α,25(OH)2D3, suppresses HBp17/FGFBP-1 expression and tumor growth in vitro and in vivo by inhibiting the nuclear factor kappa-light-chain-enhancer of activated B cells signaling pathway. Here, we discuss the prospects of molecular targeted therapy targeting HBp17/FGFBP-1 with 1α,25(OH)2D3 or ED71 in SCC and oral SCC.
    Matched MeSH terms: Cell Proliferation/drug effects
  14. Lim SW, Loh HS, Ting KN, Bradshaw TD, Zeenathul NA
    Biomed Pharmacother, 2014 Oct;68(8):1105-15.
    PMID: 25456851 DOI: 10.1016/j.biopha.2014.10.006
    The pure vitamin isomer, β-tocotrienol has the least abundance among the other vitamin E isomers that are present in numerous plants. Hence, it is very scarcely studied for its bioactivity. In this study, the antiproliferative effects and primary apoptotic mechanisms of β-tocotrienol on human lung adenocarcinoma A549 and glioblastoma U87MG cells were investigated. It was evidenced that β-tocotrienol had inhibited the growth of both A549 (GI50=1.38±0.334μM) and U87MG (GI50=2.53±0.604μM) cells at rather low concentrations. Cancer cells incubated with β-tocotrienol were also found to exhibit hallmarks of apoptotic morphologies including membrane blebbing, chromatin condensation and formation of apoptotic bodies. The apoptotic properties of β-tocotrienol in both A549 and U87MG cells were the results of its capability to induce significant (P<0.05) double-strand DNA breaks (DSBs) without involving single-strand DNA breaks (SSBs). β-Tocotrienol is said to induce activation of caspase-8 in both A549 and U87MG cells guided by no activation when caspase-8 inhibitor, z-IETD-fmk was added. Besides, disruption on the mitochondrial membrane permeability of the cells in a concentration- and time-dependent manner had occurred. The induction of apoptosis by β-tocotrienol in A549 and U87MG cells was confirmed to involve both the death-receptor mediated and mitochondria-dependent apoptotic pathways. These findings could potentiate the palm oil derived β-tocotrienol to serve as a new anticancer agent for treating human lung and brain cancers.
    Matched MeSH terms: Cell Proliferation/drug effects; Cell Proliferation/physiology*
  15. Tee YN, Kumar PV, Maki MAA, Elumalai M, Rahman SAKMEH, Cheah SC
    Curr Pharm Biotechnol, 2021;22(7):969-982.
    PMID: 33342408 DOI: 10.2174/1389201021666201218124450
    BACKGROUND: Recombinant Keratinocyte Growth Factor (rHuKGF) is a therapeutic protein used widely in oral mucositis after chemotherapy in various cancers, stimulating lung morphogenesis and gastrointestinal tract cell proliferation. In this research study, chitosan-rHuKGF polymeric complex was implemented to improve the stability of rHuKGF and used as rejuvenation therapy for the treatment of oral mucositis in cancer patients.

    OBJECTIVE: Complexation of rHuKGF with mucoadhesive low molecular weight chitosan to protect rHuKGF from proteolysis and investigate the effect of chitosan-rHuKGF complex on the proliferation rate of FHs 74 Int cells.

    METHODS: The interaction between chitosan and rHuKGF was studied by molecular docking. Malvern ZetaSizer Nano Zs and Fourier-Transform Infrared spectroscopy (FTIR) tests were carried out to characterize the chitosan-rHuKGF complex. In addition, SDS-PAGE was performed to investigate the interaction between chitosan-rHuKGF complex and pepsin. The effect of chitosan-rHuKGF complex on the proliferation rate of FHs 74 Int cells was studied by MTT assay.

    RESULTS: Chitosan-rHuKGF complex was formed through the hydrogen bonding proven by the docking studies. A stable chitosan-rHuKGF complex was formed at pH 4.5 and was protected from proteolysis and assessed by SDS PAGE. According to the MTT assay results, chitosan-rHuKGF complex increased the cell proliferation rate of FHs 74 Int cells.

    CONCLUSION: The developed complex improved the stability and the biological function of rHuKGF.

    Matched MeSH terms: Cell Proliferation/drug effects*; Cell Proliferation/physiology
  16. Baharuddin AA, Roosli RAJ, Zakaria ZA, Md Tohid SF
    Pharm Biol, 2018 Dec;56(1):422-432.
    PMID: 30301390 DOI: 10.1080/13880209.2018.1495748
    CONTEXT: Dicranopteris linearis (Burm.f.) Underw. (Gleicheniaceae) has been scientifically proven to exert various pharmacological activities. Nevertheless, its anti-proliferative potential has not been extensively investigated.

    OBJECTIVE: To investigate the anti-proliferative potential of D. linearis leaves and determine possible mechanistic pathways.

    MATERIALS AND METHODS: MTT assay was used to determine the cytotoxic effects of D. linearis methanol (MEDL) and petroleum ether (PEEDL) extracts at concentrations of 100, 50, 25, 12.5, 6.25 and 3.125 µg/mL against a panel of cancer cell lines (breast [MCF-7 and MDA-MB-231], cervical [HeLa], colon [HT-29], hepatocellular [HepG2] and lung [A549]), as compared to negative (untreated) and positive [5-fluorouracil (5-FU)-treated] control groups. Mouse fibroblast cells (3T3) were used as normal cells. The mode of cell death was examined using morphological analysis via acridine orange (AO) and propidium iodide (PI) double staining. Cell cycle arrest was determined using flow cytometer, followed by annexin V-PI apoptosis detection kit.

    RESULTS: MEDL demonstrated the most significant growth inhibition against MDA-MB-231 cells (IC50 22.4 µg/mL). PEEDL showed no cytotoxic effect. Induction of apoptosis by MEDL was evidenced via morphological analysis and acridine orange propidium iodide staining. MEDL could induce S phase cell cycle arrest after 72 h of incubation. Early apoptosis induction in MDA-MB-231 cells was confirmed by annexin V-FITC and PI staining. Significant increase in apoptotic cells were detected after 24 h of treatment with 15.07% cells underwent apoptosis, and the amount escalated to 18.24% with prolonged 48 h incubation.

    CONCLUSIONS: MEDL has potential as a potent cytotoxic agent against MDA-MB-231 adenocarcinoma.

    Matched MeSH terms: Cell Proliferation/drug effects*; Cell Proliferation/physiology
  17. Rich AM, Hussaini HM, Parachuru VP, Seymour GJ
    Front Immunol, 2014;5:464.
    PMID: 25309546 DOI: 10.3389/fimmu.2014.00464
    It is becoming increasingly apparent that the tumor microenvironment plays an important role in the progression of cancer. The microenvironment may promote tumor cell survival and proliferation or, alternatively may induce tumor cell apoptosis. Toll-like receptors (TLRs) are transmembrane proteins, expressed on immune cells and epithelial cells, that recognize exogenous and endogenous macromolecules. Once activated, they initiate signaling pathways leading to the release of cytokines and chemokines, which recruit immune cells inducing further cytokine production, the production of angiogenic mediators and growth factors, all of which may influence tumor progression. This paper examines the actions of TLRs in carcinogenesis with particular emphasis on their role in oral squamous cell carcinoma.
    Matched MeSH terms: Cell Proliferation
  18. Zainal Ariffin SH, Kermani S, Zainol Abidin IZ, Megat Abdul Wahab R, Yamamoto Z, Senafi S, et al.
    Stem Cells Int, 2013;2013:250740.
    PMID: 24348580 DOI: 10.1155/2013/250740
    Dental pulp tissue contains dental pulp stem cells (DPSCs). Dental pulp cells (also known as dental pulp-derived mesenchymal stem cells) are capable of differentiating into multilineage cells including neuron-like cells. The aim of this study was to examine the capability of DPSCs to differentiate into neuron-like cells without using any reagents or growth factors. DPSCs were isolated from teeth extracted from 6- to 8-week-old mice and maintained in complete medium. The cells from the fourth passage were induced to differentiate by culturing in medium without serum or growth factors. RT-PCR molecular analysis showed characteristics of Cd146(+) , Cd166(+) , and Cd31(-) in DPSCs, indicating that these cells are mesenchymal stem cells rather than hematopoietic stem cells. After 5 days of neuronal differentiation, the cells showed neuron-like morphological changes and expressed MAP2 protein. The activation of Nestin was observed at low level prior to differentiation and increased after 5 days of culture in differentiation medium, whereas Tub3 was activated only after 5 days of neuronal differentiation. The proliferation of the differentiated cells decreased in comparison to that of the control cells. Dental pulp stem cells are induced to differentiate into neuron-like cells when cultured in serum- and growth factor-free medium.
    Matched MeSH terms: Cell Proliferation
  19. Salehinejad P, Alitheen NB, Nematollahi-Mahani SN, Ali AM, Omar AR, Janzamin E, et al.
    Cytotherapy, 2012 Sep;14(8):948-53.
    PMID: 22587592 DOI: 10.3109/14653249.2012.684377
    BACKGROUND AIMS: Mesenchymal stromal cells (MSC) have been isolated from a number of different tissues, including umbilical cord. Because of the lack of a uniform approach to human umbilical cord matrix-derived mesenchymal (hUCM) cell expansion, we attempted to identify the optimum conditions for the production of a high quantity of hUCM cells by comparing two media.

    METHODS: We compared the ability of Dulbecco's Modified Eagle's Medium/F12 (DMEM/F12) and Alpha Minimum Essential Medium (α-MEM) with Glutamax (GL) (α-MEM/GL) to expand hUCM cells. For this purpose, hUCM cells were cultured in plates containing different culture media supplemented with 10% fetal bovine serum (FBS). Culture dishes were left undisturbed for 10-14 days to allow propagation of the newly formed hUCM cells. The expansion properties, CD marker expression, differentiation potential, population doubling time (PDT) and cell activity were compared between the two groups.

    RESULTS: The hUCM cells harvested from each group were positive for MSC markers, including CD44, CD90 and CD105, while they were negative for the hematopoietic cell surface marker CD34. Differentiation into adipogenic and osteogenic lineages was confirmed for both treatments. Cell activity was higher in the α-MEM/GL group than the DMEM/F12 group. PDT was calculated to be 60 h for the DMEM/F12 group, while for the α-MEM/GL group it was 47 h.

    CONCLUSIONS: Our data reveal that α-MEM/GL with 10% FBS supports hUCM cell growth more strongly than DMEM/F12 with 10% FBS.

    Matched MeSH terms: Cell Proliferation
  20. Yadav K, Lakra WS, Sharma J, Goswami M, Singh A
    Fish Physiol Biochem, 2012 Aug;38(4):1035-1045.
    PMID: 22203177 DOI: 10.1007/s10695-011-9588-7
    Tor tor is an important game and food fish of India with a distribution throughout Asia from the trans-Himalayan region to the Mekong River basin to Malaysia, Pakistan, Bangladesh and Indonesia. A new cell line named TTCF was developed from the caudal fin of T. tor for the first time. The cell line was optimally maintained at 28°C in Leibovitz-15 (L-15) medium supplemented with 20% fetal bovine serum (FBS). The propagation of TTCF cells showed a high plating efficiency of 63.00%. The cytogenetic analysis revealed a diploid count of 100 chromosomes at passage 15, 30, 45 and 60 passages. The viability of the TTCF cell line was found to be 72% after 6 months of cryopreservation in liquid nitrogen (-196°C). The origin of the cell lines was confirmed by the amplification of 578- and 655-bp sequences of 16S rRNA and cytochrome oxidase subunit I (COI) genes of mitochondrial DNA (mtDNA) respectively. TTCF cells were successfully transfected with green fluorescent protein (GFP) reporter plasmids. Further, immunocytochemistry studies confirm its fibroblastic morphology of cells. Genotoxicity assessment of H₂O₂ in TTCF cell line revealed the utility of TTCF cell line as in vitro model for aquatic toxicological studies.
    Matched MeSH terms: Cell Proliferation
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links